|
| 1 | +"""Script to print out all (most) paper results from camera-ready version. |
| 2 | +""" |
| 3 | + |
| 4 | +import os |
| 5 | +from pathlib import Path |
| 6 | + |
| 7 | +import numpy as np |
| 8 | + |
| 9 | +from sequentialized_barnard_tests import ( |
| 10 | + Hypothesis, |
| 11 | + MirroredLaiTest, |
| 12 | + MirroredSaviTest, |
| 13 | + MirroredStepTest, |
| 14 | +) |
| 15 | + |
| 16 | +if __name__ == "__main__": |
| 17 | + """ |
| 18 | + Script to confirm paper results. Prints all results to terminal. |
| 19 | +
|
| 20 | + Runtime should be on the order of ~5 seconds |
| 21 | + """ |
| 22 | + |
| 23 | + # Set the data path |
| 24 | + paper_data_path = str( |
| 25 | + Path( |
| 26 | + os.path.join( |
| 27 | + os.path.dirname(os.path.abspath(__file__)), |
| 28 | + "../../tests/eval_data/", |
| 29 | + ) |
| 30 | + ).resolve() |
| 31 | + ) |
| 32 | + |
| 33 | + # Load the paper data |
| 34 | + eval_clean_up_spill = np.load( |
| 35 | + f"{paper_data_path}/TRI_CLEAN_SPILL_v4.npy" |
| 36 | + ) # Must be flipped for standard form |
| 37 | + eval_fold_red_towel = np.load( |
| 38 | + f"{paper_data_path}/TRI_FOLD_RED_TOWEL.npy" |
| 39 | + ) # ALREADY in standard form |
| 40 | + eval_sim_spoon_on_towel = np.load( |
| 41 | + f"{paper_data_path}/TRI_SIM_SPOON_ON_TOWEL.npy" |
| 42 | + ) # Must be flipped for standard form |
| 43 | + eval_sim_eggplant_in_basket = np.load( |
| 44 | + f"{paper_data_path}/TRI_SIM_EGGPLANT_IN_BASKET.npy" |
| 45 | + ) # Must be flipped for standard form |
| 46 | + eval_sim_stack_cube = np.load( |
| 47 | + f"{paper_data_path}/TRI_SIM_STACK_CUBE.npy" |
| 48 | + ) # Must be flipped for standard form |
| 49 | + eval_distribution_carrot_on_plate_supplement = np.load( |
| 50 | + f"{paper_data_path}/PU_HARDWARE_DISTRIBUTION_SUPPLEMENT.npy" |
| 51 | + ) # Must be flipped for standard form |
| 52 | + eval_policy_carrot_on_plate_supplement = np.load( |
| 53 | + f"{paper_data_path}/PU_HARDWARE_POLICY_SUPPLEMENT.npy" |
| 54 | + ) # ALREADY in standard form |
| 55 | + |
| 56 | + # Load SAVI tests |
| 57 | + savi_hardware = MirroredSaviTest(alternative=Hypothesis.P0LessThanP1, alpha=0.05) |
| 58 | + savi_simulation = MirroredSaviTest(alternative=Hypothesis.P0LessThanP1, alpha=0.01) |
| 59 | + |
| 60 | + # Load Lai tests |
| 61 | + lai_hardware_50 = MirroredLaiTest( |
| 62 | + alternative=Hypothesis.P0LessThanP1, n_max=50, alpha=0.05 |
| 63 | + ) |
| 64 | + lai_hardware_50.calibrate_c() |
| 65 | + print("Lai-50 value of c: ", lai_hardware_50.c) |
| 66 | + |
| 67 | + lai_hardware_200 = MirroredLaiTest( |
| 68 | + alternative=Hypothesis.P0LessThanP1, n_max=200, alpha=0.05 |
| 69 | + ) |
| 70 | + lai_hardware_200.calibrate_c() |
| 71 | + print("Lai-200 value of c: ", lai_hardware_200.c) |
| 72 | + # lai_hardware_200.set_c(0.00014741399676752065) |
| 73 | + |
| 74 | + lai_hardware_500 = MirroredLaiTest( |
| 75 | + alternative=Hypothesis.P0LessThanP1, n_max=500, alpha=0.05 |
| 76 | + ) |
| 77 | + lai_hardware_500.calibrate_c() |
| 78 | + print("Lai-500 value of c: ", lai_hardware_500.c) |
| 79 | + # lai_hardware_500.set_c(5.349419043278717e-05) |
| 80 | + |
| 81 | + lai_simulation_500 = MirroredLaiTest( |
| 82 | + alternative=Hypothesis.P0LessThanP1, n_max=500, alpha=0.01 |
| 83 | + ) |
| 84 | + lai_simulation_500.calibrate_c() |
| 85 | + print("Lai-500 SIM value of c: ", lai_simulation_500.c) |
| 86 | + # lai_simulation_500.set_c(1.184327928758278e-05) |
| 87 | + |
| 88 | + # Load STEP tests |
| 89 | + step_random_seed = 42 |
| 90 | + |
| 91 | + step_hardware_50 = MirroredStepTest( |
| 92 | + alternative=Hypothesis.P0LessThanP1, |
| 93 | + n_max=50, |
| 94 | + alpha=0.05, |
| 95 | + random_seed=step_random_seed, |
| 96 | + ) |
| 97 | + step_hardware_200 = MirroredStepTest( |
| 98 | + alternative=Hypothesis.P0LessThanP1, |
| 99 | + n_max=200, |
| 100 | + alpha=0.05, |
| 101 | + random_seed=step_random_seed, |
| 102 | + ) |
| 103 | + step_hardware_500 = MirroredStepTest( |
| 104 | + alternative=Hypothesis.P0LessThanP1, |
| 105 | + n_max=500, |
| 106 | + alpha=0.05, |
| 107 | + random_seed=step_random_seed, |
| 108 | + ) |
| 109 | + step_simulation_500 = MirroredStepTest( |
| 110 | + alternative=Hypothesis.P0LessThanP1, |
| 111 | + n_max=500, |
| 112 | + alpha=0.01, |
| 113 | + random_seed=step_random_seed, |
| 114 | + ) |
| 115 | + |
| 116 | + # Run without index permutation |
| 117 | + permutation_idx_hardware = np.arange(50) |
| 118 | + permutation_idx_simulation = np.arange(500) |
| 119 | + |
| 120 | + # Run appropriate tests on each data stream |
| 121 | + |
| 122 | + #################################### |
| 123 | + ### Result 0: Princeton Hardware ### |
| 124 | + #################################### |
| 125 | + carrotplate_distribution_result_lai_200 = lai_hardware_200.run_on_sequence( |
| 126 | + eval_distribution_carrot_on_plate_supplement[:, 0], |
| 127 | + eval_distribution_carrot_on_plate_supplement[:, 1], |
| 128 | + ) |
| 129 | + carrotplate_distribution_result_step_200 = step_hardware_200.run_on_sequence( |
| 130 | + eval_distribution_carrot_on_plate_supplement[:, 0], |
| 131 | + eval_distribution_carrot_on_plate_supplement[:, 1], |
| 132 | + ) |
| 133 | + carrotplate_distribution_result_savi = savi_hardware.run_on_sequence( |
| 134 | + eval_distribution_carrot_on_plate_supplement[:, 0], |
| 135 | + eval_distribution_carrot_on_plate_supplement[:, 1], |
| 136 | + ) |
| 137 | + |
| 138 | + carrotplate_policy_result_lai_200 = lai_hardware_200.run_on_sequence( |
| 139 | + eval_policy_carrot_on_plate_supplement[:, 0], |
| 140 | + eval_policy_carrot_on_plate_supplement[:, 1], |
| 141 | + ) |
| 142 | + carrotplate_policy_result_step_200 = step_hardware_200.run_on_sequence( |
| 143 | + eval_policy_carrot_on_plate_supplement[:, 0], |
| 144 | + eval_policy_carrot_on_plate_supplement[:, 1], |
| 145 | + ) |
| 146 | + carrotplate_policy_result_savi = savi_hardware.run_on_sequence( |
| 147 | + eval_policy_carrot_on_plate_supplement[:, 0], |
| 148 | + eval_policy_carrot_on_plate_supplement[:, 1], |
| 149 | + ) |
| 150 | + |
| 151 | + print() |
| 152 | + print("CARROT ON PLATE (Distribution Shift): ") |
| 153 | + print() |
| 154 | + print( |
| 155 | + "Lai-200 time-to-decision: ", |
| 156 | + carrotplate_distribution_result_lai_200.info["Time"], |
| 157 | + ) |
| 158 | + print( |
| 159 | + "STEP-200 time-to-decision: ", |
| 160 | + carrotplate_distribution_result_step_200.info["Time"], |
| 161 | + ) |
| 162 | + print( |
| 163 | + "SAVI time-to-decision: ", |
| 164 | + carrotplate_distribution_result_savi.info["result_for_alternative"].info[ |
| 165 | + "Time" |
| 166 | + ], |
| 167 | + ) |
| 168 | + print() |
| 169 | + print("CARROT ON PLATE Supplement E (Policy Shift): ") |
| 170 | + print() |
| 171 | + print( |
| 172 | + "Lai-200 time-to-decision: ", |
| 173 | + carrotplate_policy_result_lai_200.info["Time"], |
| 174 | + ) |
| 175 | + print( |
| 176 | + "STEP-200 time-to-decision: ", |
| 177 | + carrotplate_policy_result_step_200.info["Time"], |
| 178 | + ) |
| 179 | + print( |
| 180 | + "SAVI time-to-decision: ", |
| 181 | + carrotplate_policy_result_savi.info["result_for_alternative"].info["Time"], |
| 182 | + ) |
| 183 | + |
| 184 | + ############################## |
| 185 | + ### Result 1: FoldRedTowel ### |
| 186 | + ############################## |
| 187 | + foldredtowel_result_lai_50 = lai_hardware_50.run_on_sequence( |
| 188 | + eval_fold_red_towel[permutation_idx_hardware, 0], |
| 189 | + eval_fold_red_towel[permutation_idx_hardware, 1], |
| 190 | + ) |
| 191 | + foldredtowel_result_lai_200 = lai_hardware_200.run_on_sequence( |
| 192 | + eval_fold_red_towel[permutation_idx_hardware, 0], |
| 193 | + eval_fold_red_towel[permutation_idx_hardware, 1], |
| 194 | + ) |
| 195 | + foldredtowel_result_lai_500 = lai_hardware_500.run_on_sequence( |
| 196 | + eval_fold_red_towel[permutation_idx_hardware, 0], |
| 197 | + eval_fold_red_towel[permutation_idx_hardware, 1], |
| 198 | + ) |
| 199 | + |
| 200 | + foldredtowel_result_savi = savi_hardware.run_on_sequence( |
| 201 | + eval_fold_red_towel[permutation_idx_hardware, 0], |
| 202 | + eval_fold_red_towel[permutation_idx_hardware, 1], |
| 203 | + ) |
| 204 | + |
| 205 | + foldredtowel_result_step_50 = step_hardware_50.run_on_sequence( |
| 206 | + eval_fold_red_towel[permutation_idx_hardware, 0], |
| 207 | + eval_fold_red_towel[permutation_idx_hardware, 1], |
| 208 | + ) |
| 209 | + foldredtowel_result_step_200 = step_hardware_200.run_on_sequence( |
| 210 | + eval_fold_red_towel[permutation_idx_hardware, 0], |
| 211 | + eval_fold_red_towel[permutation_idx_hardware, 1], |
| 212 | + ) |
| 213 | + foldredtowel_result_step_500 = step_hardware_500.run_on_sequence( |
| 214 | + eval_fold_red_towel[permutation_idx_hardware, 0], |
| 215 | + eval_fold_red_towel[permutation_idx_hardware, 1], |
| 216 | + ) |
| 217 | + |
| 218 | + print() |
| 219 | + print("FOLD RED TOWEL: ") |
| 220 | + print() |
| 221 | + print("Lai-50 time-to-decision: ", foldredtowel_result_lai_50.info["Time"]) |
| 222 | + print("Lai-200 time-to-decision: ", foldredtowel_result_lai_200.info["Time"]) |
| 223 | + print("Lai-500 time-to-decision: ", foldredtowel_result_lai_500.info["Time"]) |
| 224 | + print("STEP-50 time-to-decision: ", foldredtowel_result_step_50.info["Time"]) |
| 225 | + print("STEP-200 time-to-decision: ", foldredtowel_result_step_200.info["Time"]) |
| 226 | + print("STEP-500 time-to-decision: ", foldredtowel_result_step_500.info["Time"]) |
| 227 | + print( |
| 228 | + "SAVI time-to-decision: ", |
| 229 | + foldredtowel_result_savi.info["result_for_alternative"].info["Time"], |
| 230 | + ) |
| 231 | + |
| 232 | + ############################## |
| 233 | + ### Result 2: CleanUpSpill ### |
| 234 | + ############################## |
| 235 | + cleanupspill_result_lai_50 = lai_hardware_50.run_on_sequence( |
| 236 | + eval_clean_up_spill[permutation_idx_hardware, 0], |
| 237 | + eval_clean_up_spill[permutation_idx_hardware, 1], |
| 238 | + ) |
| 239 | + cleanupspill_result_lai_200 = lai_hardware_200.run_on_sequence( |
| 240 | + eval_clean_up_spill[permutation_idx_hardware, 0], |
| 241 | + eval_clean_up_spill[permutation_idx_hardware, 1], |
| 242 | + ) |
| 243 | + cleanupspill_result_lai_500 = lai_hardware_500.run_on_sequence( |
| 244 | + eval_clean_up_spill[permutation_idx_hardware, 0], |
| 245 | + eval_clean_up_spill[permutation_idx_hardware, 1], |
| 246 | + ) |
| 247 | + |
| 248 | + cleanupspill_result_savi = savi_hardware.run_on_sequence( |
| 249 | + eval_clean_up_spill[permutation_idx_hardware, 0], |
| 250 | + eval_clean_up_spill[permutation_idx_hardware, 1], |
| 251 | + ) |
| 252 | + |
| 253 | + cleanupspill_result_step_50 = step_hardware_50.run_on_sequence( |
| 254 | + eval_clean_up_spill[permutation_idx_hardware, 0], |
| 255 | + eval_clean_up_spill[permutation_idx_hardware, 1], |
| 256 | + ) |
| 257 | + cleanupspill_result_step_200 = step_hardware_200.run_on_sequence( |
| 258 | + eval_clean_up_spill[permutation_idx_hardware, 0], |
| 259 | + eval_clean_up_spill[permutation_idx_hardware, 1], |
| 260 | + ) |
| 261 | + cleanupspill_result_step_500 = step_hardware_500.run_on_sequence( |
| 262 | + eval_clean_up_spill[permutation_idx_hardware, 0], |
| 263 | + eval_clean_up_spill[permutation_idx_hardware, 1], |
| 264 | + ) |
| 265 | + |
| 266 | + print() |
| 267 | + print("CLEAN UP SPILL: ") |
| 268 | + print() |
| 269 | + print("Lai-50 time-to-decision: ", cleanupspill_result_lai_50.info["Time"]) |
| 270 | + print("Lai-200 time-to-decision: ", cleanupspill_result_lai_200.info["Time"]) |
| 271 | + print("Lai-500 time-to-decision: ", cleanupspill_result_lai_500.info["Time"]) |
| 272 | + print("STEP-50 time-to-decision: ", cleanupspill_result_step_50.info["Time"]) |
| 273 | + print("STEP-200 time-to-decision: ", cleanupspill_result_step_200.info["Time"]) |
| 274 | + print("STEP-500 time-to-decision: ", cleanupspill_result_step_500.info["Time"]) |
| 275 | + print( |
| 276 | + "SAVI time-to-decision: ", |
| 277 | + cleanupspill_result_savi.info["result_for_alternative"].info["Time"], |
| 278 | + ) |
| 279 | + |
| 280 | + ############################## |
| 281 | + ### Result 3: SpoonOnTowel ### |
| 282 | + ############################## |
| 283 | + spoonontowel_result_lai_500 = lai_simulation_500.run_on_sequence( |
| 284 | + eval_sim_spoon_on_towel[permutation_idx_simulation, 0], |
| 285 | + eval_sim_spoon_on_towel[permutation_idx_simulation, 1], |
| 286 | + ) |
| 287 | + spoonontowel_result_savi = savi_simulation.run_on_sequence( |
| 288 | + eval_sim_spoon_on_towel[permutation_idx_simulation, 0], |
| 289 | + eval_sim_spoon_on_towel[permutation_idx_simulation, 1], |
| 290 | + ) |
| 291 | + spoonontowel_result_step_500 = step_simulation_500.run_on_sequence( |
| 292 | + eval_sim_spoon_on_towel[permutation_idx_simulation, 0], |
| 293 | + eval_sim_spoon_on_towel[permutation_idx_simulation, 1], |
| 294 | + ) |
| 295 | + |
| 296 | + print() |
| 297 | + print("SPOON ON TOWEL: ") |
| 298 | + print() |
| 299 | + print("Lai-500 time-to-decision: ", spoonontowel_result_lai_500.info["Time"]) |
| 300 | + print("STEP-500 time-to-decision: ", spoonontowel_result_step_500.info["Time"]) |
| 301 | + print( |
| 302 | + "SAVI time-to-decision: ", |
| 303 | + spoonontowel_result_savi.info["result_for_alternative"].info["Time"], |
| 304 | + ) |
| 305 | + |
| 306 | + ################################## |
| 307 | + ### Result 4: EggplantInBasket ### |
| 308 | + ################################## |
| 309 | + eggplantinbasket_result_lai_500 = lai_simulation_500.run_on_sequence( |
| 310 | + eval_sim_eggplant_in_basket[permutation_idx_simulation, 0], |
| 311 | + eval_sim_eggplant_in_basket[permutation_idx_simulation, 1], |
| 312 | + ) |
| 313 | + eggplantinbasket_result_savi = savi_simulation.run_on_sequence( |
| 314 | + eval_sim_eggplant_in_basket[permutation_idx_simulation, 0], |
| 315 | + eval_sim_eggplant_in_basket[permutation_idx_simulation, 1], |
| 316 | + ) |
| 317 | + eggplantinbasket_result_step_500 = step_simulation_500.run_on_sequence( |
| 318 | + eval_sim_eggplant_in_basket[permutation_idx_simulation, 0], |
| 319 | + eval_sim_eggplant_in_basket[permutation_idx_simulation, 1], |
| 320 | + ) |
| 321 | + |
| 322 | + print() |
| 323 | + print("EGGPLANT IN BASKET: ") |
| 324 | + print() |
| 325 | + print("Lai-500 time-to-decision: ", eggplantinbasket_result_lai_500.info["Time"]) |
| 326 | + print("STEP-500 time-to-decision: ", eggplantinbasket_result_step_500.info["Time"]) |
| 327 | + print( |
| 328 | + "SAVI time-to-decision: ", |
| 329 | + eggplantinbasket_result_savi.info["result_for_alternative"].info["Time"], |
| 330 | + ) |
| 331 | + |
| 332 | + ########################### |
| 333 | + ### Result 5: StackCube ### |
| 334 | + ########################### |
| 335 | + stackcube_result_lai_500 = lai_simulation_500.run_on_sequence( |
| 336 | + eval_sim_stack_cube[permutation_idx_simulation, 0], |
| 337 | + eval_sim_stack_cube[permutation_idx_simulation, 1], |
| 338 | + ) |
| 339 | + stackcube_result_savi = savi_simulation.run_on_sequence( |
| 340 | + eval_sim_stack_cube[permutation_idx_simulation, 0], |
| 341 | + eval_sim_stack_cube[permutation_idx_simulation, 1], |
| 342 | + ) |
| 343 | + stackcube_result_step_500 = step_simulation_500.run_on_sequence( |
| 344 | + eval_sim_stack_cube[permutation_idx_simulation, 0], |
| 345 | + eval_sim_stack_cube[permutation_idx_simulation, 1], |
| 346 | + ) |
| 347 | + |
| 348 | + print() |
| 349 | + print("STACK CUBE: ") |
| 350 | + print() |
| 351 | + print("Lai-500 time-to-decision: ", stackcube_result_lai_500.info["Time"]) |
| 352 | + print("STEP-500 time-to-decision: ", stackcube_result_step_500.info["Time"]) |
| 353 | + print( |
| 354 | + "SAVI time-to-decision: ", |
| 355 | + stackcube_result_savi.info["result_for_alternative"].info["Time"], |
| 356 | + ) |
0 commit comments