Skip to content

ThirdKeyAI/symbiont-sdk-python

Repository files navigation

Symbiont Python SDK

A Python SDK for interacting with the Symbiont Agent Runtime System, providing a streamlined interface for building AI-powered applications with agent capabilities, tool review workflows, and security analysis.

Overview

The Symbiont Python SDK enables developers to integrate with the Symbiont platform, which provides intelligent agent runtime capabilities and comprehensive tool review workflows. This SDK handles authentication, HTTP requests, error handling, and provides typed models for working with Symbiont agents, tool reviews, and related resources.

Installation

Install from PyPI

pip install symbiont-sdk

Install from Repository (Development)

For development or to get the latest features:

git clone https://github.com/thirdkeyai/symbiont-sdk-python.git
cd symbiont-sdk-python
pip install -e .

Docker

The SDK is also available as a Docker image from GitHub Container Registry:

# Pull the latest image
docker pull ghcr.io/thirdkeyai/symbiont-sdk-python:latest

# Or pull a specific version
docker pull ghcr.io/thirdkeyai/symbiont-sdk-python:v0.2.0

Running with Docker

# Run interactively with Python REPL
docker run -it --rm ghcr.io/thirdkeyai/symbiont-sdk-python:latest

# Run with environment variables
docker run -it --rm \
  -e SYMBIONT_API_KEY=your_api_key \
  -e SYMBIONT_BASE_URL=http://host.docker.internal:8080/api/v1 \
  ghcr.io/thirdkeyai/symbiont-sdk-python:latest

# Run a Python script from host
docker run --rm \
  -v $(pwd):/workspace \
  -w /workspace \
  -e SYMBIONT_API_KEY=your_api_key \
  ghcr.io/thirdkeyai/symbiont-sdk-python:latest \
  python your_script.py

# Execute one-liner
docker run --rm \
  -e SYMBIONT_API_KEY=your_api_key \
  ghcr.io/thirdkeyai/symbiont-sdk-python:latest \
  python -c "from symbiont import Client; print(Client().health_check())"

Building Docker Image Locally

# Build from source
git clone https://github.com/thirdkeyai/symbiont-sdk-python.git
cd symbiont-sdk-python
docker build -t symbiont-sdk:local .

# Run locally built image
docker run -it --rm symbiont-sdk:local

Configuration

The SDK features a comprehensive configuration system that supports multiple sources including environment variables, configuration files (YAML/JSON), and programmatic configuration. The system provides centralized management with validation and hot-reloading capabilities.

Configuration Sources

  1. Environment Variables - Loaded automatically from .env files or system environment
  2. Configuration Files - YAML or JSON files with structured configuration
  3. Programmatic Configuration - Direct configuration objects in your code

Basic Configuration

Copy the provided .env.example file to get started:

cp .env.example .env

Environment Variables

All configuration options can be set using environment variables with the SYMBIONT_ prefix:

Variable Description Default
SYMBIONT_API_KEY API key for authentication None
SYMBIONT_BASE_URL Base URL for the Symbiont API http://localhost:8080/api/v1
SYMBIONT_TIMEOUT Request timeout in seconds 30
SYMBIONT_MAX_RETRIES Maximum retries for API calls 3
SYMBIONT_AUTH_JWT_SECRET_KEY JWT secret key for token validation None
SYMBIONT_AUTH_JWT_ALGORITHM JWT algorithm HS256
SYMBIONT_DB_HOST Database host localhost
SYMBIONT_DB_PORT Database port 5432
SYMBIONT_VECTOR_HOST Vector database host localhost
SYMBIONT_VECTOR_PORT Vector database port 6333
SYMBIONT_LOGGING_LEVEL Logging level INFO

Configuration File Example

Create a config.yml file for structured configuration:

# API Configuration
api_key: "your_api_key_here"
base_url: "http://localhost:8080/api/v1"
timeout: 30
max_retries: 3

# Authentication Configuration
auth:
  jwt_secret_key: "your-jwt-secret-key"
  jwt_algorithm: "HS256"
  jwt_expiration_seconds: 3600
  enable_refresh_tokens: true

# Database Configuration
database:
  host: "localhost"
  port: 5432
  database: "symbiont"
  username: "user"
  password: "password"

# Vector Database Configuration
vector:
  provider: "qdrant"
  host: "localhost"
  port: 6333
  collection_name: "symbiont_vectors"
  vector_size: 1536
  distance_metric: "cosine"

# Logging Configuration
logging:
  level: "INFO"
  enable_console: true
  enable_structured: false

Programmatic Configuration

from symbiont import ClientConfig, AuthConfig, VectorConfig

# Create configuration programmatically
config = ClientConfig(
    api_key="your_api_key",
    base_url="http://localhost:8080/api/v1",
    auth=AuthConfig(
        jwt_secret_key="your-secret-key",
        enable_refresh_tokens=True
    ),
    vector=VectorConfig(
        host="localhost",
        port=6333,
        collection_name="my_vectors"
    )
)

# Initialize client with configuration
client = Client(config=config)

Configuration Loading Priority

Configuration values are loaded in the following priority order (highest to lowest):

  1. Explicit parameters passed to Client()
  2. Environment variables with SYMBIONT_ prefix
  3. Configuration file values (if specified)
  4. Default values

Using Configuration Manager

from symbiont import ConfigManager

# Load configuration from file
config_manager = ConfigManager()
config = config_manager.load("config.yml")

# Access configuration
print(f"API URL: {config.base_url}")
print(f"JWT enabled: {config.auth.enable_refresh_tokens}")

# Reload configuration (hot-reload)
updated_config = config_manager.reload()

Authentication

The SDK provides a comprehensive authentication system supporting multiple authentication methods including API keys, JWT tokens, and role-based access control (RBAC).

Authentication Methods

  • API Key Authentication - Simple bearer token authentication
  • JWT (JSON Web Tokens) - Secure token-based authentication with expiration and refresh
  • Role-Based Access Control - Granular permissions system with predefined and custom roles

JWT Authentication

The SDK includes full JWT support with automatic token refresh and validation:

from symbiont import Client, AuthConfig, ClientConfig

# Configure JWT authentication
config = ClientConfig(
    auth=AuthConfig(
        jwt_secret_key="your-secret-key",
        jwt_algorithm="HS256",
        jwt_expiration_seconds=3600,
        enable_refresh_tokens=True
    )
)

client = Client(config=config)

# Authenticate with JWT token
auth_response = client.authenticate_jwt("your-jwt-token")
print(f"Authenticated user: {auth_response['user_id']}")
print(f"Roles: {auth_response['roles']}")

# Get current user roles
user_roles = client.get_user_roles()
print(f"Current user roles: {user_roles}")

# Validate permissions for specific actions
can_write = client.validate_permissions("write", "documents")
print(f"Can write to documents: {can_write}")

# Refresh access token
refresh_response = client.refresh_token()
print(f"New access token: {refresh_response['access_token']}")

Role-Based Access Control

The authentication system includes a flexible RBAC system with predefined roles:

from symbiont.auth import AuthManager, Role, Permission

# Available permissions
permissions = [
    Permission.READ,      # Read access
    Permission.WRITE,     # Write access
    Permission.DELETE,    # Delete access
    Permission.EXECUTE,   # Execute access
    Permission.ADMIN      # Administrative access
]

# Predefined roles
# - admin: Full system access (all permissions)
# - user: Standard user access (read, write, execute)
# - readonly: Read-only access

# Create custom role
custom_role = Role(
    name="data_analyst",
    permissions={Permission.READ, Permission.EXECUTE},
    description="Can read data and execute analysis"
)

# Register custom role with AuthManager
auth_manager = AuthManager(config.auth)
auth_manager.create_role(custom_role)

Authentication Configuration

Configure authentication in your configuration file:

auth:
  jwt_secret_key: "your-secret-key-here"
  jwt_algorithm: "HS256"
  jwt_expiration_seconds: 3600        # 1 hour
  jwt_refresh_expiration_seconds: 86400  # 24 hours
  enable_refresh_tokens: true
  token_issuer: "symbiont"
  token_audience: "symbiont-api"
  api_key_header: "Authorization"

Or using environment variables:

SYMBIONT_AUTH_JWT_SECRET_KEY=your-secret-key
SYMBIONT_AUTH_JWT_ALGORITHM=HS256
SYMBIONT_AUTH_JWT_EXPIRATION_SECONDS=3600
SYMBIONT_AUTH_ENABLE_REFRESH_TOKENS=true

Quick Start

Basic Client Initialization

from symbiont import Client

# Initialize with environment variables
client = Client()

# Or initialize with explicit parameters
client = Client(
    api_key="your_api_key",
    base_url="http://localhost:8080/api/v1"
)

# Initialize with configuration object
from symbiont import ClientConfig, AuthConfig

config = ClientConfig(
    api_key="your_api_key",
    base_url="http://localhost:8080/api/v1",
    auth=AuthConfig(jwt_secret_key="your-secret")
)
client = Client(config=config)

System Health Check

from symbiont import Client

client = Client()

# Check system health
health = client.health_check()
print(f"Status: {health.status}")
print(f"Uptime: {health.uptime_seconds} seconds")
print(f"Version: {health.version}")

Memory System

The SDK includes a comprehensive hierarchical memory system that enables agents to store, retrieve, and manage different types of memories across multiple storage backends. The system supports conversation context, episodic memories, semantic knowledge, and automatic memory consolidation.

Memory Hierarchy

The memory system organizes information into different levels:

  • Short-term Memory - Recent interactions with limited capacity and automatic expiration
  • Long-term Memory - Persistent important information with high retention
  • Episodic Memory - Event-based contextual memories tied to specific experiences
  • Semantic Memory - Fact-based knowledge and learned information

Memory Types

  • Conversation - Dialog and interaction memories
  • Fact - Factual information and knowledge
  • Experience - Event-based experiential memories
  • Context - Contextual information and metadata
  • Metadata - System and operational metadata

Adding Memories

from symbiont import Client, MemoryStoreRequest
from symbiont.memory import MemoryType, MemoryLevel

client = Client()

# Add a conversation memory
conversation_memory = MemoryStoreRequest(
    content={
        "user_message": "What's the weather like?",
        "assistant_response": "I can help you check the weather. What's your location?",
        "timestamp": "2024-01-15T10:30:00Z"
    },
    memory_type=MemoryType.CONVERSATION,
    memory_level=MemoryLevel.SHORT_TERM,
    agent_id="agent-123",
    conversation_id="conv-456",
    importance_score=0.7
)

memory_response = client.add_memory(conversation_memory)
print(f"Memory stored with ID: {memory_response.memory_id}")

# Add a factual knowledge memory
fact_memory = MemoryStoreRequest(
    content={
        "fact": "The user prefers metric units for temperature",
        "context": "User settings and preferences",
        "confidence": 0.95
    },
    memory_type=MemoryType.FACT,
    memory_level=MemoryLevel.LONG_TERM,
    agent_id="agent-123",
    importance_score=0.9
)

fact_response = client.add_memory(fact_memory)
print(f"Fact stored with ID: {fact_response.memory_id}")

Retrieving Memories

from symbiont import MemoryQuery, MemorySearchRequest

# Retrieve a specific memory
memory_query = MemoryQuery(
    memory_id="memory-789",
    agent_id="agent-123"
)

memory = client.get_memory(memory_query)
print(f"Retrieved memory: {memory.content}")

# Search memories by criteria
search_request = MemorySearchRequest(
    agent_id="agent-123",
    memory_types=[MemoryType.CONVERSATION],
    memory_levels=[MemoryLevel.SHORT_TERM],
    query_text="weather",
    limit=10
)

search_results = client.search_memory(search_request)
print(f"Found {len(search_results.memories)} matching memories")

for memory in search_results.memories:
    print(f"- {memory.content}")
    print(f"  Importance: {memory.importance_score}")

Conversation Context

# Get conversation context with related memories
conversation_context = client.get_conversation_context(
    conversation_id="conv-456",
    agent_id="agent-123"
)

print(f"Conversation: {conversation_context.conversation_id}")
print(f"Related memories: {len(conversation_context.memories)}")
print(f"Context summary: {conversation_context.summary}")

# List all memories for an agent
agent_memories = client.list_agent_memories(
    agent_id="agent-123",
    limit=50
)

print(f"Agent has {len(agent_memories.memories)} total memories")

Memory Consolidation

The memory system automatically consolidates memories to maintain performance and relevance:

# Manually trigger memory consolidation
consolidation_result = client.consolidate_memory("agent-123")

print(f"Consolidation results:")
print(f"- Promoted to long-term: {consolidation_result.promoted_count}")
print(f"- Archived: {consolidation_result.archived_count}")
print(f"- Deleted: {consolidation_result.deleted_count}")

Storage Backends

The memory system supports multiple storage backends:

  • In-Memory - Fast access for development and testing
  • Redis - Distributed caching with persistence
  • PostgreSQL - Relational database storage (via configuration)

Configure the storage backend in your configuration:

# In config.yml
database:
  host: "localhost"
  port: 5432
  database: "symbiont_memory"
  username: "user"
  password: "password"

# For Redis backend
memory:
  storage_type: "redis"
  redis_url: "redis://localhost:6379/1"

Vector Database (Qdrant Integration)

The SDK provides comprehensive vector database integration using Qdrant for semantic search, similarity matching, and knowledge management operations.

Vector Collections

from symbiont import Client, CollectionCreateRequest

client = Client()

# Create a vector collection
collection_request = CollectionCreateRequest(
    collection_name="documents",
    vector_size=1536,
    distance_metric="cosine",
    description="Document embeddings collection"
)

collection_response = client.create_vector_collection(collection_request)
print(f"Created collection: {collection_response.collection_name}")

# List all collections
collections = client.list_vector_collections()
print(f"Available collections: {collections}")

# Get collection information
collection_info = client.get_collection_info("documents")
print(f"Collection size: {collection_info.vectors_count}")
print(f"Vector dimension: {collection_info.vector_size}")

Vector Operations

from symbiont import VectorUpsertRequest, VectorSearchRequest

# Add vectors to collection
vectors_data = [
    {
        "id": "doc-001",
        "vector": [0.1, 0.2, 0.3, ...],  # 1536-dimensional vector
        "payload": {
            "title": "Getting Started Guide",
            "content": "This guide helps you get started...",
            "category": "documentation"
        }
    },
    {
        "id": "doc-002",
        "vector": [0.4, 0.5, 0.6, ...],
        "payload": {
            "title": "API Reference",
            "content": "Complete API documentation...",
            "category": "reference"
        }
    }
]

upsert_request = VectorUpsertRequest(
    collection_name="documents",
    vectors=vectors_data
)

upsert_response = client.add_vectors(upsert_request)
print(f"Added {upsert_response.vectors_count} vectors")

# Search for similar vectors
search_request = VectorSearchRequest(
    collection_name="documents",
    query_vector=[0.15, 0.25, 0.35, ...],  # Query vector
    limit=5,
    score_threshold=0.7,
    filter_conditions={
        "category": "documentation"
    }
)

search_response = client.search_vectors(search_request)
print(f"Found {len(search_response.results)} similar vectors")

for result in search_response.results:
    print(f"- ID: {result.id}")
    print(f"  Score: {result.similarity_score}")
    print(f"  Title: {result.payload['title']}")

Semantic Search

# Perform semantic search with text queries
semantic_search = VectorSearchRequest(
    collection_name="documents",
    query_text="How to authenticate users",  # Text will be converted to vector
    limit=3,
    score_threshold=0.8
)

results = client.search_vectors(semantic_search)
for result in results.results:
    print(f"Match: {result.payload['title']}")
    print(f"Relevance: {result.similarity_score:.2f}")
    print(f"Content: {result.payload['content'][:100]}...")

Vector Management

# Get specific vectors
vector_ids = ["doc-001", "doc-002"]
retrieved_vectors = client.get_vectors("documents", vector_ids)

for vector in retrieved_vectors:
    print(f"Vector ID: {vector['id']}")
    print(f"Payload: {vector['payload']}")

# Delete vectors
client.delete_vectors("documents", ["doc-003", "doc-004"])

# Count vectors in collection
vector_count = client.count_vectors("documents")
print(f"Total vectors: {vector_count}")

# Delete entire collection
client.delete_vector_collection("old_collection")

API Reference

Enhanced Client Methods

The SDK has been significantly expanded with new client methods organized by functionality:

Configuration Management

# Get current client configuration
config = client.get_configuration()
print(f"Base URL: {config.base_url}")

# Reload configuration from sources
client.reload_configuration()

# Configure client with new settings
new_config = ClientConfig(base_url="https://new-api.example.com")
client.configure_client(new_config)

Authentication & Authorization

# JWT authentication
auth_response = client.authenticate_jwt("your-jwt-token")
print(f"User: {auth_response['user_id']}")

# Token refresh
refresh_response = client.refresh_token()
print(f"New token: {refresh_response['access_token']}")

# Permission validation
can_write = client.validate_permissions("write", "documents")
user_roles = client.get_user_roles()

Memory Management

# Store memories
memory_response = client.add_memory(memory_request)

# Retrieve and search memories
memory = client.get_memory(memory_query)
search_results = client.search_memory(search_request)

# Conversation context
context = client.get_conversation_context("conv-123", "agent-123")

# Memory consolidation
consolidation = client.consolidate_memory("agent-123")

# Agent memory listing
agent_memories = client.list_agent_memories("agent-123")

Vector Database Operations

# Collection management
collection = client.create_vector_collection(collection_request)
collections = client.list_vector_collections()
collection_info = client.get_collection_info("my_collection")
client.delete_vector_collection("old_collection")

# Vector operations
upsert_response = client.add_vectors(upsert_request)
vectors = client.get_vectors("collection", ["id1", "id2"])
search_results = client.search_vectors(search_request)
client.delete_vectors("collection", ["id3", "id4"])
vector_count = client.count_vectors("collection")

HTTP Endpoint Management

# Create and manage HTTP endpoints
endpoint = client.create_http_endpoint(endpoint_request)
endpoints = client.list_http_endpoints()
endpoint_info = client.get_http_endpoint("endpoint-123")
updated_endpoint = client.update_http_endpoint(update_request)

# Endpoint control
client.enable_http_endpoint("endpoint-123")
client.disable_http_endpoint("endpoint-123") 
client.delete_http_endpoint("endpoint-123")

# Endpoint metrics
metrics = client.get_endpoint_metrics("endpoint-123")
print(f"Request count: {metrics.request_count}")
print(f"Average response time: {metrics.avg_response_time}ms")

Agent Management

List Agents

# Get list of all agents
agents = client.list_agents()
print(f"Found {len(agents)} agents: {agents}")

Get Agent Status

from symbiont import AgentState

# Get specific agent status
status = client.get_agent_status("agent-123")
print(f"Agent {status.agent_id} is {status.state}")
print(f"Memory usage: {status.resource_usage.memory_bytes} bytes")
print(f"CPU usage: {status.resource_usage.cpu_percent}%")

Create Agent

from symbiont import Agent

# Create a new agent
agent_data = Agent(
    id="my-agent",
    name="My Assistant",
    description="A helpful AI assistant",
    system_prompt="You are a helpful assistant.",
    tools=["web_search", "calculator"],
    model="gpt-4",
    temperature=0.7,
    top_p=0.9,
    max_tokens=1000
)

result = client.create_agent(agent_data)
print(f"Created agent: {result}")

Workflow Execution

from symbiont import WorkflowExecutionRequest

# Execute a workflow
workflow_request = WorkflowExecutionRequest(
    workflow_id="data-analysis-workflow",
    parameters={
        "input_data": "path/to/data.csv",
        "analysis_type": "statistical"
    },
    agent_id="agent-123"  # Optional
)

result = client.execute_workflow(workflow_request)
print(f"Workflow result: {result}")

Tool Review API

The Tool Review API provides comprehensive workflows for securely reviewing, analyzing, and signing MCP tools.

Submit Tool for Review

from symbiont import (
    ReviewSessionCreate, Tool, ToolProvider, ToolSchema
)

# Define a tool for review
tool = Tool(
    name="example-calculator",
    description="A simple calculator tool",
    schema=ToolSchema(
        type="object",
        properties={
            "operation": {
                "type": "string",
                "enum": ["add", "subtract", "multiply", "divide"]
            },
            "a": {"type": "number"},
            "b": {"type": "number"}
        },
        required=["operation", "a", "b"]
    ),
    provider=ToolProvider(
        name="example-provider",
        public_key_url="https://example.com/pubkey.pem"
    )
)

# Submit for review
review_request = ReviewSessionCreate(
    tool=tool,
    submitted_by="[email protected]",
    priority="normal"
)

session = client.submit_tool_for_review(review_request)
print(f"Review session {session.review_id} created with status: {session.status}")

Monitor Review Progress

from symbiont import ReviewStatus

# Get review session details
session = client.get_review_session("review-123")
print(f"Review status: {session.status}")
print(f"Submitted by: {session.submitted_by}")

# Check if analysis is complete
if session.state.analysis_id:
    analysis = client.get_analysis_results(session.state.analysis_id)
    print(f"Risk score: {analysis.risk_score}/100")
    print(f"Found {len(analysis.findings)} security findings")
    
    for finding in analysis.findings:
        print(f"- {finding.severity.upper()}: {finding.title}")

List Review Sessions

# List all review sessions with filtering
sessions = client.list_review_sessions(
    page=1,
    limit=10,
    status="pending_review",
    author="[email protected]"
)

print(f"Found {len(sessions.sessions)} sessions")
for session in sessions.sessions:
    print(f"- {session.review_id}: {session.tool.name} ({session.status})")

Wait for Review Completion

# Wait for review to complete (with timeout)
try:
    final_session = client.wait_for_review_completion("review-123", timeout=300)
    print(f"Review completed with status: {final_session.status}")
    
    if final_session.status == "approved":
        print("Tool approved for signing!")
    elif final_session.status == "rejected":
        print("Tool rejected. Check review comments.")
        
except TimeoutError:
    print("Review did not complete within timeout period")

Submit Human Review Decision

from symbiont import HumanReviewDecision

# Submit reviewer decision
decision = HumanReviewDecision(
    decision="approve",
    comments="Tool looks safe after manual review",
    reviewer_id="[email protected]"
)

result = client.submit_human_review_decision("review-123", decision)
print(f"Decision submitted: {result}")

Sign Approved Tool

from symbiont import SigningRequest

# Sign an approved tool
signing_request = SigningRequest(
    review_id="review-123",
    signing_key_id="key-456"
)

signature = client.sign_approved_tool(signing_request)
print(f"Tool signed at {signature.signed_at}")
print(f"Signature: {signature.signature}")

# Get signed tool information
signed_tool = client.get_signed_tool("review-123")
print(f"Signed tool: {signed_tool.tool.name}")
print(f"Signature algorithm: {signed_tool.signature_algorithm}")

Error Handling

The SDK provides specific exception classes for different types of errors:

from symbiont import (
    Client, APIError, AuthenticationError, 
    NotFoundError, RateLimitError, SymbiontError
)

client = Client()

try:
    # Make an API request
    session = client.get_review_session("non-existent-review")
    
except AuthenticationError as e:
    print(f"Authentication failed: {e}")
    print("Please check your API key")
    
except NotFoundError as e:
    print(f"Resource not found: {e}")
    print(f"Response: {e.response_text}")
    
except RateLimitError as e:
    print(f"Rate limit exceeded: {e}")
    print("Please wait before making more requests")
    
except APIError as e:
    print(f"API error (status {e.status_code}): {e}")
    print(f"Response: {e.response_text}")
    
except SymbiontError as e:
    print(f"SDK error: {e}")
    
except Exception as e:
    print(f"Unexpected error: {e}")

Exception Hierarchy

  • SymbiontError - Base exception for all SDK errors
    • APIError - Generic API errors (4xx and 5xx status codes)
    • AuthenticationError - 401 Unauthorized responses
    • NotFoundError - 404 Not Found responses
    • RateLimitError - 429 Too Many Requests responses

Advanced Usage

Working with Models

All API responses are automatically converted to typed Pydantic models:

from symbiont import ReviewSession, SecurityFinding, FindingSeverity

# Models provide type safety and validation
session = client.get_review_session("review-123")

# Access typed attributes
session_id: str = session.review_id
status: ReviewStatus = session.status
submitted_time: datetime = session.submitted_at

# Work with nested models
if session.state.critical_findings:
    for finding in session.state.critical_findings:
        finding_id: str = finding.finding_id
        severity: FindingSeverity = finding.severity
        confidence: float = finding.confidence

Batch Operations

# Submit multiple tools for review
tools_to_review = [tool1, tool2, tool3]
review_sessions = []

for tool in tools_to_review:
    request = ReviewSessionCreate(
        tool=tool,
        submitted_by="[email protected]"
    )
    session = client.submit_tool_for_review(request)
    review_sessions.append(session)

print(f"Submitted {len(review_sessions)} tools for review")

# Monitor all sessions
for session in review_sessions:
    current_status = client.get_review_session(session.review_id)
    print(f"Tool {current_status.tool.name}: {current_status.status}")

Testing

Install Development Dependencies

pip install -r requirements-dev.txt

Run Tests

# Run all tests
pytest

# Run tests with coverage
pytest --cov=symbiont

# Run specific test file
pytest tests/test_client.py

# Run tests with verbose output
pytest -v

Running Tests in Development

# Create a virtual environment (recommended)
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# Install dependencies
pip install -r requirements.txt
pip install -r requirements-dev.txt

# Run tests
pytest

Requirements

  • Python 3.7+
  • requests
  • pydantic
  • python-dotenv

What's New in v0.3.0

Major New Features

  • Secrets Management System: Complete secrets management with HashiCorp Vault, encrypted files, and OS keychain integration
  • MCP Management: Enhanced Model Context Protocol server management and tool integration
  • Vector Database & RAG: Knowledge management with vector similarity search and retrieval-augmented generation
  • Agent DSL Operations: DSL compilation and agent deployment capabilities
  • Enhanced Monitoring: Comprehensive system and agent metrics
  • Security Enhancements: Advanced signing and verification workflows

Secrets Management

from symbiont import (
    Client, SecretBackendConfig, SecretBackendType,
    VaultConfig, VaultAuthMethod, SecretRequest
)

client = Client()

# Configure HashiCorp Vault backend
vault_config = VaultConfig(
    url="https://vault.example.com",
    auth_method=VaultAuthMethod.TOKEN,
    token="hvs.abc123..."
)

backend_config = SecretBackendConfig(
    backend_type=SecretBackendType.VAULT,
    vault_config=vault_config
)

client.configure_secret_backend(backend_config)

# Store and retrieve secrets
secret_request = SecretRequest(
    agent_id="agent-123",
    secret_name="api_key",
    secret_value="secret_value_here",
    description="API key for external service"
)

response = client.store_secret(secret_request)
print(f"Secret stored: {response.secret_name}")

# Retrieve secret
secret_value = client.get_secret("agent-123", "api_key")
print(f"Retrieved secret: {secret_value}")

# List all secrets for an agent
secrets_list = client.list_secrets("agent-123")
print(f"Agent secrets: {secrets_list.secrets}")

MCP Management

from symbiont import McpServerConfig

# Add MCP server
mcp_config = McpServerConfig(
    name="filesystem-server",
    command=["npx", "@modelcontextprotocol/server-filesystem", "/tmp"],
    env={"NODE_ENV": "production"},
    timeout_seconds=30
)

client.add_mcp_server(mcp_config)

# Connect to server
client.connect_mcp_server("filesystem-server")

# List available tools and resources
tools = client.list_mcp_tools("filesystem-server")
resources = client.list_mcp_resources("filesystem-server")

print(f"Available tools: {[tool.name for tool in tools]}")
print(f"Available resources: {[resource.uri for resource in resources]}")

# Get connection status
connection_info = client.get_mcp_server("filesystem-server")
print(f"Status: {connection_info.status}")
print(f"Tools count: {connection_info.tools_count}")

Vector Database & RAG

from symbiont import (
    KnowledgeItem, VectorMetadata, KnowledgeSourceType,
    VectorSearchRequest, ContextQuery
)

# Add knowledge items
metadata = VectorMetadata(
    source="documentation.md",
    source_type=KnowledgeSourceType.DOCUMENT,
    timestamp=datetime.now(),
    agent_id="agent-123"
)

knowledge_item = KnowledgeItem(
    id="doc-001",
    content="This is important documentation about the system...",
    metadata=metadata
)

client.add_knowledge_item(knowledge_item)

# Search knowledge base
search_request = VectorSearchRequest(
    query="How do I configure the system?",
    agent_id="agent-123",
    source_types=[KnowledgeSourceType.DOCUMENT],
    limit=5,
    similarity_threshold=0.7
)

search_results = client.search_knowledge(search_request)
for result in search_results.results:
    print(f"Score: {result.similarity_score}")
    print(f"Content: {result.item.content[:100]}...")

# Get context for RAG operations
context_query = ContextQuery(
    query="How do I set up authentication?",
    agent_id="agent-123",
    max_context_items=3
)

context = client.get_context(context_query)
print(f"Retrieved {len(context.context_items)} context items")
print(f"Sources: {context.sources}")

Agent DSL Operations

from symbiont import DslCompileRequest, AgentDeployRequest

# Compile DSL code
dsl_code = """
agent webhook_handler {
    name: "Webhook Handler"
    description: "Handles incoming webhooks"
    
    trigger github_webhook {
        on_push: main
    }
    
    action process_webhook {
        validate_signature()
        parse_payload()
        trigger_workflow()
    }
}
"""

compile_request = DslCompileRequest(
    dsl_content=dsl_code,
    agent_name="webhook_handler",
    validate_only=False
)

compile_result = client.compile_dsl(compile_request)
if compile_result.success:
    print(f"Compiled successfully: {compile_result.agent_id}")
    
    # Deploy the agent
    deploy_request = AgentDeployRequest(
        agent_id=compile_result.agent_id,
        environment="production",
        config_overrides={"max_concurrent_tasks": 10}
    )
    
    deployment = client.deploy_agent(deploy_request)
    print(f"Deployed: {deployment.deployment_id}")
    print(f"Endpoint: {deployment.endpoint_url}")
else:
    print(f"Compilation errors: {compile_result.errors}")

Enhanced Monitoring

# Get comprehensive system metrics
system_metrics = client.get_metrics()
print(f"Memory usage: {system_metrics.memory_usage_percent}%")
print(f"CPU usage: {system_metrics.cpu_usage_percent}%")
print(f"Active agents: {system_metrics.active_agents}")
print(f"Vector DB items: {system_metrics.vector_db_items}")
print(f"MCP connections: {system_metrics.mcp_connections}")

# Get agent-specific metrics
agent_metrics = client.get_agent_metrics("agent-123")
print(f"Tasks completed: {agent_metrics.tasks_completed}")
print(f"Average response time: {agent_metrics.average_response_time_ms}ms")
print(f"Agent uptime: {agent_metrics.uptime_seconds}s")

Previous Release Notes

v0.2.0

  • Tool Review API: Complete implementation of tool review workflows
  • Runtime API: Agent management, workflow execution, and system metrics
  • Enhanced Models: Comprehensive type definitions for all API responses
  • Better Error Handling: Specific exceptions for different error conditions
  • Improved Documentation: Complete API reference with examples

License

This project is licensed under the MIT License. See the LICENSE file for details.

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

Setting up for Development

  1. Fork the repository
  2. Clone your fork locally
  3. Set up development environment:
git clone https://github.com/yourusername/symbiont-sdk-python.git
cd symbiont-sdk-python
python -m venv .venv
source .venv/bin/activate  # On Windows: .venv\Scripts\activate
pip install -r requirements.txt
pip install -r requirements-dev.txt
  1. Run tests to ensure everything works:
pytest
ruff check symbiont/
bandit -r symbiont/
  1. Make your changes and add tests
  2. Submit a pull request

Release Process

Releases are automated through GitHub Actions:

  1. CI/CD: Every push/PR triggers testing across Python 3.8-3.12
  2. Release: Create a new tag with format v*.*.* (e.g., v0.2.0) to trigger:
    • Automated testing
    • Package building
    • PyPI publishing
    • GitHub release creation

Setting up PyPI Publishing (Maintainers)

For repository maintainers, set up these GitHub repository secrets:

  • PYPI_API_TOKEN: PyPI API token for automated publishing

To create a PyPI API token:

  1. Go to PyPI Account Settings → API tokens
  2. Create new token with scope for this project
  3. Add to GitHub repository secrets as PYPI_API_TOKEN

Container Registry Publishing

The Docker workflow automatically publishes container images to GitHub Container Registry:

  • Latest image: Published on every push to main branch (ghcr.io/thirdkeyai/symbiont-sdk-python:latest)
  • Version tags: Published on release tags (ghcr.io/thirdkeyai/symbiont-sdk-python:v0.2.0)
  • Branch tags: Published for feature branches during development

Images are built for multiple architectures (linux/amd64, linux/arm64) and include:

  • Multi-stage optimized builds for smaller image size
  • Non-root user execution for security
  • Health checks for container monitoring
  • Full SDK functionality with all dependencies

Both the release workflow (PyPI) and Docker workflow (container registry) will automatically run when a new tag is pushed.