Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 6 additions & 5 deletions ConvertedTester.py
Original file line number Diff line number Diff line change
Expand Up @@ -56,7 +56,7 @@ def _calcuate_accuracy(self, original_sentences: List[str], converted_sentences:
correct_count += 1
return correct_count / len(original_sentences)

def test(self, df: pd.DataFrame) -> Tuple[float, float, float]:
def test(self, original_df: pd.DataFrame, noised_df: pd.DataFrame) -> Tuple[float, float, float]:
"""
주어진 문장들에 대해 변환기의 성능을 테스트하는 메소드

Expand All @@ -66,8 +66,8 @@ def test(self, df: pd.DataFrame) -> Tuple[float, float, float]:
Returns:
float: 변환기의 성능
"""
sentences = df['text'].tolist()
noised_sentences_df = NoiseGeneratorASCII(ratio = 0.3).generate(df)
sentences = original_df['text'].tolist()
noised_sentences_df = noised_df.copy()
converted_sentences = self.converter.convert(noised_sentences_df)['text'].tolist()

for i, (original, noised ,converted) in enumerate(zip(sentences, noised_sentences_df['text'].to_list(),converted_sentences)):
Expand All @@ -88,10 +88,11 @@ def test(self, df: pd.DataFrame) -> Tuple[float, float, float]:
from src.data_control.noise_converter.NCVarco import NCVarco

model_ids = ['rtzr/ko-gemma-2-9b-it', 'HumanF-MarkrAI/Gukbap-Gemma2-9B', 'NCSOFT/Llama-VARCO-8B-Instruct']
prompts = ['prompts/gemma-converter.json', 'prompts/gukbap-gemma-converter.json', 'varco-converter.json']
prompts = ['prompts/gemma-converter.json', 'prompts/gukbap-gemma-converter.json', 'prompts/varco-converter.json']

sample_df = pd.read_csv('data/cleaned.csv')
sample_df = sample_df[sample_df['noise'] == 0].sample(10, random_state=42)
noised_sample_df = NoiseGeneratorASCII(ratio=0.5).generate(sample_df)

for i, model_id in enumerate(model_ids):
if 'gemma' in model_id.lower():
Expand All @@ -102,4 +103,4 @@ def test(self, df: pd.DataFrame) -> Tuple[float, float, float]:
converter = NCVarco(model_id, prompt= prompts[i])

tester = ConvertedTester(converter)
tester.test(sample_df)
tester.test(sample_df, noised_sample_df)