Jupyter NbModel Client is a python library to interact with a live Jupyter Notebooks.
To install the library, run the following command.
pip install jupyter_nbmodel_clientWe ask you to take additional actions to overcome limitations and bugs of the pycrdt library.
# Ensure you create a new shell after running the following commands.
pip uninstall -y pycrdt datalayer_pycrdt
pip install datalayer_pycrdt- Ensure you have the needed packages in your environment to run the example here after.
pip install jupyterlab jupyter-collaboration matplotlib- Start a JupyterLab server, setting a
portand atokento be reused by the agent, and create a notebooktest.ipynb.
# make jupyterlab
jupyter lab --port 8888 --ServerApp.port_retries 0 --IdentityProvider.token MY_TOKEN --ServerApp.root_dir ./dev- Open a IPython (needed for async functions) REPL in a terminal with
ipython(orjupyter console). Execute the following snippet to add a cell in thetest.ipynbnotebook.
from jupyter_nbmodel_client import NbModelClient, get_jupyter_notebook_websocket_url
ws_url = get_jupyter_notebook_websocket_url(
server_url="http://localhost:8888",
token="MY_TOKEN",
path="test.ipynb"
)
async with NbModelClient(ws_url) as nbmodel:
nbmodel.add_code_cell("print('hello world')")Check
test.ipynbin JupyterLab, you should see a cell with contentprint('hello world')appended to the notebook.
- The previous example does not involve kernels. Put that now in the picture, adding a cell and executing the cell code within a kernel process.
from jupyter_kernel_client import KernelClient
from jupyter_nbmodel_client import NbModelClient, get_jupyter_notebook_websocket_url
with KernelClient(server_url="http://localhost:8888", token="MY_TOKEN") as kernel:
ws_url = get_jupyter_notebook_websocket_url(
server_url="http://localhost:8888",
token="MY_TOKEN",
path="test.ipynb"
)
async with NbModelClient(ws_url) as notebook:
cell_index = notebook.add_code_cell("print('hello world')")
results = notebook.execute_cell(cell_index, kernel)
print(results)
assert results["status"] == "ok"
assert len(results["outputs"]) > 0Check
test.ipynbin JupyterLab. You should see an additional cell with contentprint('hello world')appended to the notebook, but this time the cell is executed, so the output should showhello world.
You can go further and create a plot with eg matplotlib.
from jupyter_kernel_client import KernelClient
from jupyter_nbmodel_client import NbModelClient, get_jupyter_notebook_websocket_url
CODE = """import matplotlib.pyplot as plt
fig, ax = plt.subplots()
fruits = ['apple', 'blueberry', 'cherry', 'orange']
counts = [40, 100, 30, 55]
bar_labels = ['red', 'blue', '_red', 'orange']
bar_colors = ['tab:red', 'tab:blue', 'tab:red', 'tab:orange']
ax.bar(fruits, counts, label=bar_labels, color=bar_colors)
ax.set_ylabel('fruit supply')
ax.set_title('Fruit supply by kind and color')
ax.legend(title='Fruit color')
plt.show()
"""
with KernelClient(server_url="http://localhost:8888", token="MY_TOKEN") as kernel:
ws_url = get_jupyter_notebook_websocket_url(
server_url="http://localhost:8888",
token="MY_TOKEN",
path="test.ipynb"
)
async with NbModelClient(ws_url) as notebook:
cell_index = notebook.add_code_cell(CODE)
results = notebook.execute_cell(cell_index, kernel)
print(results)
assert results["status"] == "ok"
assert len(results["outputs"]) > 0Check
test.ipynbin JupyterLab for the cell with the matplotlib.
Note
Instead of using the nbmodel clients as context manager, you can call the start() and stop() methods.
from jupyter_nbmodel_client import NbModelClient, get_jupyter_notebook_websocket_url
kernel = KernelClient(server_url="http://localhost:8888", token="MY_TOKEN")
kernel.start()
try:
ws_url = get_jupyter_notebook_websocket_url(
server_url="http://localhost:8888",
token="MY_TOKEN",
path="test.ipynb"
)
notebook = NbModelClient(ws_url)
await notebook.start()
try:
cell_index = notebook.add_code_cell("print('hello world')")
results = notebook.execute_cell(cell_index, kernel)
finally:
await notebook.stop()
finally:
kernel.stop()To connect to a Datalayer collaborative room, you can use the helper function get_datalayer_notebook_websocket_url:
- The
serverishttps://prod1.datalayer.runfor the Datalayer production SaaS. - The
room_idis the id of your notebook shown in the URL browser bar. - The
tokenis the assigned token for the notebook.
All those details can be retrieved from a Notebook sidebar on the Datalayer SaaS.
from jupyter_nbmodel_client import NbModelClient, get_datalayer_notebook_websocket_url
ws_url = get_datalayer_notebook_websocket_url(
server_url=server,
room_id=room_id,
token=token
)
async with NbModelClient(ws_url) as notebook:
notebook.add_code_cell("1+1")To remove the library, run the following.
pip uninstall jupyter_nbmodel_client# Clone the repo to your local environment
# Change directory to the jupyter_nbmodel_client directory
# Install package in development mode - will automatically enable
# The server extension.
pip install -e ".[test,lint,typing]"Install dependencies:
pip install -e ".[test]"To run the python tests, use:
pytestpip uninstall jupyter_nbmodel_clientSee RELEASE