Skip to content
5 changes: 5 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -43,6 +43,11 @@ We list a few projects that use DeepLab2.

* <a href='https://colab.research.google.com/github/google-research/deeplab2/blob/main/DeepLab_Demo.ipynb'>Colab notebook for off-the-shelf inference.</a><br>

## Gradio Demo

* <a href='https://gradio.app/hub/AK391/deeplab2'>Gradio Web Demo</a><br>

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I am getting error 502 Bad Gateway with this URL.



## Running DeepLab2

See [Getting Started](g3doc/setup/getting_started.md). In short, run the
Expand Down
273 changes: 273 additions & 0 deletions gradio/demo.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,273 @@
import collections
import os
import tempfile

from matplotlib import gridspec
from matplotlib import pyplot as plt
import numpy as np
from PIL import Image
import urllib

import tensorflow as tf
import gradio as gr

from subprocess import call
import sys

import requests

url1 = 'https://cdn.pixabay.com/photo/2014/09/07/21/52/city-438393_1280.jpg'
r = requests.get(url1, allow_redirects=True)
open("city1.jpg", 'wb').write(r.content)

url2 = 'https://cdn.pixabay.com/photo/2016/02/19/11/36/canal-1209808_1280.jpg'
r = requests.get(url2, allow_redirects=True)
open("city2.jpg", 'wb').write(r.content)
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

sorry for a late comment on style here: would it be possible to move these variables into main() and add a section

if name == 'main':
app.run(main)

This would be more consistent with other python scripts in this repo.

Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

is this the right section of code for this comment?

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I was referring to line 19-25 here. variables url1 / r / url2 are global variables and might hurt readability.

deeplab2 codebase encourage removing global variables if possible, with the exception of global constants (where the variable naming would be all caps)



DatasetInfo = collections.namedtuple(
'DatasetInfo',
'num_classes, label_divisor, thing_list, colormap, class_names')


def _cityscapes_label_colormap():
"""Creates a label colormap used in CITYSCAPES segmentation benchmark.
See more about CITYSCAPES dataset at https://www.cityscapes-dataset.com/
M. Cordts, et al. "The Cityscapes Dataset for Semantic Urban Scene Understanding." CVPR. 2016.
Returns:
A 2-D numpy array with each row being mapped RGB color (in uint8 range).
"""
colormap = np.zeros((256, 3), dtype=np.uint8)
colormap[0] = [128, 64, 128]
colormap[1] = [244, 35, 232]
colormap[2] = [70, 70, 70]
colormap[3] = [102, 102, 156]
colormap[4] = [190, 153, 153]
colormap[5] = [153, 153, 153]
colormap[6] = [250, 170, 30]
colormap[7] = [220, 220, 0]
colormap[8] = [107, 142, 35]
colormap[9] = [152, 251, 152]
colormap[10] = [70, 130, 180]
colormap[11] = [220, 20, 60]
colormap[12] = [255, 0, 0]
colormap[13] = [0, 0, 142]
colormap[14] = [0, 0, 70]
colormap[15] = [0, 60, 100]
colormap[16] = [0, 80, 100]
colormap[17] = [0, 0, 230]
colormap[18] = [119, 11, 32]
return colormap


def _cityscapes_class_names():
return ('road', 'sidewalk', 'building', 'wall', 'fence', 'pole',
'traffic light', 'traffic sign', 'vegetation', 'terrain', 'sky',
'person', 'rider', 'car', 'truck', 'bus', 'train', 'motorcycle',
'bicycle')


def cityscapes_dataset_information():
return DatasetInfo(
num_classes=19,
label_divisor=1000,
thing_list=tuple(range(11, 19)),
colormap=_cityscapes_label_colormap(),
class_names=_cityscapes_class_names())


def perturb_color(color, noise, used_colors, max_trials=50, random_state=None):
"""Pertrubs the color with some noise.
If `used_colors` is not None, we will return the color that has
not appeared before in it.
Args:
color: A numpy array with three elements [R, G, B].
noise: Integer, specifying the amount of perturbing noise (in uint8 range).
used_colors: A set, used to keep track of used colors.
max_trials: An integer, maximum trials to generate random color.
random_state: An optional np.random.RandomState. If passed, will be used to
generate random numbers.
Returns:
A perturbed color that has not appeared in used_colors.
"""
if random_state is None:
random_state = np.random

for _ in range(max_trials):
random_color = color + random_state.randint(
low=-noise, high=noise + 1, size=3)
random_color = np.clip(random_color, 0, 255)

if tuple(random_color) not in used_colors:
used_colors.add(tuple(random_color))
return random_color

print('Max trial reached and duplicate color will be used. Please consider '
'increase noise in `perturb_color()`.')
return random_color


def color_panoptic_map(panoptic_prediction, dataset_info, perturb_noise):
"""Helper method to colorize output panoptic map.
Args:
panoptic_prediction: A 2D numpy array, panoptic prediction from deeplab
model.
dataset_info: A DatasetInfo object, dataset associated to the model.
perturb_noise: Integer, the amount of noise (in uint8 range) added to each
instance of the same semantic class.
Returns:
colored_panoptic_map: A 3D numpy array with last dimension of 3, colored
panoptic prediction map.
used_colors: A dictionary mapping semantic_ids to a set of colors used
in `colored_panoptic_map`.
"""
if panoptic_prediction.ndim != 2:
raise ValueError('Expect 2-D panoptic prediction. Got {}'.format(
panoptic_prediction.shape))

semantic_map = panoptic_prediction // dataset_info.label_divisor
instance_map = panoptic_prediction % dataset_info.label_divisor
height, width = panoptic_prediction.shape
colored_panoptic_map = np.zeros((height, width, 3), dtype=np.uint8)

used_colors = collections.defaultdict(set)
# Use a fixed seed to reproduce the same visualization.
random_state = np.random.RandomState(0)

unique_semantic_ids = np.unique(semantic_map)
for semantic_id in unique_semantic_ids:
semantic_mask = semantic_map == semantic_id
if semantic_id in dataset_info.thing_list:
# For `thing` class, we will add a small amount of random noise to its
# correspondingly predefined semantic segmentation colormap.
unique_instance_ids = np.unique(instance_map[semantic_mask])
for instance_id in unique_instance_ids:
instance_mask = np.logical_and(semantic_mask,
instance_map == instance_id)
random_color = perturb_color(
dataset_info.colormap[semantic_id],
perturb_noise,
used_colors[semantic_id],
random_state=random_state)
colored_panoptic_map[instance_mask] = random_color
else:
# For `stuff` class, we use the defined semantic color.
colored_panoptic_map[semantic_mask] = dataset_info.colormap[semantic_id]
used_colors[semantic_id].add(tuple(dataset_info.colormap[semantic_id]))
return colored_panoptic_map, used_colors


def vis_segmentation(image,
panoptic_prediction,
dataset_info,
perturb_noise=60):
"""Visualizes input image, segmentation map and overlay view."""
plt.figure(figsize=(30, 20))
grid_spec = gridspec.GridSpec(2, 2)

ax = plt.subplot(grid_spec[0])
plt.imshow(image)
plt.axis('off')
ax.set_title('input image', fontsize=20)

ax = plt.subplot(grid_spec[1])
panoptic_map, used_colors = color_panoptic_map(panoptic_prediction,
dataset_info, perturb_noise)
plt.imshow(panoptic_map)
plt.axis('off')
ax.set_title('panoptic map', fontsize=20)

ax = plt.subplot(grid_spec[2])
plt.imshow(image)
plt.imshow(panoptic_map, alpha=0.7)
plt.axis('off')
ax.set_title('panoptic overlay', fontsize=20)

ax = plt.subplot(grid_spec[3])
max_num_instances = max(len(color) for color in used_colors.values())
# RGBA image as legend.
legend = np.zeros((len(used_colors), max_num_instances, 4), dtype=np.uint8)
class_names = []
for i, semantic_id in enumerate(sorted(used_colors)):
legend[i, :len(used_colors[semantic_id]), :3] = np.array(
list(used_colors[semantic_id]))
legend[i, :len(used_colors[semantic_id]), 3] = 255
if semantic_id < dataset_info.num_classes:
class_names.append(dataset_info.class_names[semantic_id])
else:
class_names.append('ignore')

plt.imshow(legend, interpolation='nearest')
ax.yaxis.tick_left()
plt.yticks(range(len(legend)), class_names, fontsize=15)
plt.xticks([], [])
ax.tick_params(width=0.0, grid_linewidth=0.0)
plt.grid('off')
return plt

def run_cmd(command):
try:
print(command)
call(command, shell=True)
except KeyboardInterrupt:
print("Process interrupted")
sys.exit(1)
MODEL_NAME = 'resnet50_os32_panoptic_deeplab_cityscapes_crowd_trainfine_saved_model'


_MODELS = ('resnet50_os32_panoptic_deeplab_cityscapes_crowd_trainfine_saved_model',
'resnet50_beta_os32_panoptic_deeplab_cityscapes_trainfine_saved_model',
'wide_resnet41_os16_panoptic_deeplab_cityscapes_trainfine_saved_model',
'swidernet_sac_1_1_1_os16_panoptic_deeplab_cityscapes_trainfine_saved_model',
'swidernet_sac_1_1_3_os16_panoptic_deeplab_cityscapes_trainfine_saved_model',
'swidernet_sac_1_1_4.5_os16_panoptic_deeplab_cityscapes_trainfine_saved_model',
'axial_swidernet_1_1_1_os16_axial_deeplab_cityscapes_trainfine_saved_model',
'axial_swidernet_1_1_3_os16_axial_deeplab_cityscapes_trainfine_saved_model',
'axial_swidernet_1_1_4.5_os16_axial_deeplab_cityscapes_trainfine_saved_model',
'max_deeplab_s_backbone_os16_axial_deeplab_cityscapes_trainfine_saved_model',
'max_deeplab_l_backbone_os16_axial_deeplab_cityscapes_trainfine_saved_model')
_DOWNLOAD_URL_PATTERN = 'https://storage.googleapis.com/gresearch/tf-deeplab/saved_model/%s.tar.gz'

_MODEL_NAME_TO_URL_AND_DATASET = {
model: (_DOWNLOAD_URL_PATTERN % model, cityscapes_dataset_information())
for model in _MODELS
}

MODEL_URL, DATASET_INFO = _MODEL_NAME_TO_URL_AND_DATASET[MODEL_NAME]

model_dir = tempfile.mkdtemp()

download_path = os.path.join(model_dir, MODEL_NAME + '.gz')
urllib.request.urlretrieve(MODEL_URL, download_path)

run_cmd("tar -xzvf " + download_path + " -C " + model_dir)

LOADED_MODEL = tf.saved_model.load(os.path.join(model_dir, MODEL_NAME))
def inference(image):
image = image.resize(size=(512, 512))
im = np.array(image)
output = LOADED_MODEL(tf.cast(im, tf.uint8))
return vis_segmentation(im, output['panoptic_pred'][0], DATASET_INFO)

title = "Deeplab2"
description = "demo for Deeplab2. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2106.09748'>DeepLab2: A TensorFlow Library for Deep Labeling</a> | <a href='https://github.com/google-research/deeplab2'>Github Repo</a></p>"

gr.Interface(
inference,
[gr.inputs.Image(type="pil", label="Input")],
gr.outputs.Image(type="plot", label="Output"),
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

haven't used gradio yet, would it be possible to output multiple plots instead one? for now the output plots (input / segmentation / overlay / legend) are very small to inspect

Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

yes multiple plots are possible, I tried to folllow the colab notebook as how the plots were presented there

Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

also the image is downloadable and can be opened then to read easier

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

y download images would be good. just thinking having separate plots would look better on the webui (and we dont need to show the original image again). Colab shows everything in one window just due to we dont want to execute extra code blocks to show them :)

Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

ok sounds good, also could the colab be updated to not show the input image as well I think the layout would show the legend on the side the two plots side by side

title=title,
description=description,
article=article,
examples=[
["city1.jpg"],
["city2.jpg"]
]).launch()
5 changes: 5 additions & 0 deletions requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
matplotlib
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Could you please not include requirements.txt for the PR?
We deleted them on purpose so that users will not just install sth wrong via pip install -r requirements.txt

numpy
Pillow
tensorflow
gradio