- 
                Notifications
    
You must be signed in to change notification settings  - Fork 109
 
BLAS 3::trsm
        Vinh Dang edited this page Feb 18, 2020 
        ·
        20 revisions
      
    Header File: KokkosBlas3_trsm.hpp
Usage: KokkosBlas::trsm(side, uplo, trans, diag, alpha, A, B);
Triangular linear system solve with multiple right-hand-sides:
op(A)*X = alpha*B if side == "L" or "l"
X*op(A) = alpha*B if side == "R" or "r"
template<class AViewType,
         class BViewType>
void
trsm (const char side[],
      const char uplo[],
      const char trans[],
      const char diag[],
      typename BViewType::const_value_type& alpha,
      const AViewType& A,
      const BViewType& B)- AViewType: 2-D 
Kokkos::View - BViewType: 2-D 
Kokkos::View 
- side [in] "L" or "l" indicates matrix A is on the left of X, "R" or "r" indicates matrix A is on the right of X.
 - uplo [in] "U" or "u" indicates matrix A upper part is stored (the other part is not referenced), "L" or "l" indicates matrix A lower part is stored (the other part is not referenced).
 - trans [in] "N" or "n" for non-transpose, "T" or "t" for transpose, "C" or "c" for conjugate transpose.
 - diag [in] "U" or "u" indicates the diagonal of A is assumed to be unit, "N" or "n" indicated the diagonal of A is assumed to be non-unit.
 - alpha [in] Input coefficient used for multiplication with B.
 - A [in] Input matrix, as a 2-D Kokkos::View. If side == "L" or "l", matrix A is a M-by-M triangular matrix; otherwise, matrix A is a N-by-N triangular matrix.
 - B [in,out] Input/Output matrix, as a 2-D Kokkos::View. On entry, M-by-N matrix of multile RHS. On exit, overwritten with the solution X.
 
- For a given set of side, uplo, trans, and diag, the dimensions of the matrices must align as necessary for triangular linear system solve.
 
#include<Kokkos_Core.hpp>
#include<Kokkos_Random.hpp>
#include<KokkosBlas3_trsm.hpp>
int main(int argc, char* argv[]) {
   Kokkos::initialize();
   int M = atoi(argv[1]);
   int N = atoi(argv[2]);
   int K = N;
   using ViewType = Kokkos::View<double**>;
   using Scalar   = typename ViewType::value_type;
   ViewType A("A",K,K);
   ViewType B("B",M,N);
   Kokkos::Random_XorShift64_Pool<typename ViewType::device_type::execution_space> rand_pool(13718);
   Kokkos::fill_random(A,rand_pool,Scalar(10));
   Kokkos::fill_random(B,rand_pool,Scalar(10));
   const Scalar alpha = 1.0;
   
   KokkosBlas::trsm("R","L","T","N",alpha,A,B);
   Kokkos::finalize();
}