Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -45,6 +45,7 @@ export(LearnerClassifLSSVM)
export(LearnerClassifLiblineaR)
export(LearnerClassifLightGBM)
export(LearnerClassifLogistic)
export(LearnerClassifMda)
export(LearnerClassifMdeb)
export(LearnerClassifMob)
export(LearnerClassifMultilayerPerceptron)
Expand Down
1 change: 1 addition & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
- `LearnerClassifAdaBoosting`
- `Learner{Classif,Regr}Evtree`
- `LearnerClassifKnn`
- `LearnerClassifMda`
- `LearnerClassifRferns`
- `LearnerClassifNeuralnet`
- `LearnerRegrBrnn`
Expand Down
98 changes: 98 additions & 0 deletions R/learner_mda_classif_mda.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,98 @@
#' @title Classification Discriminant Analysis Learner
#' @author annanzrv
#' @name mlr_learners_classif.mda
#'
#' @description
#' Mixture Discriminant Analysis.
#' Calls [mda::mda()] from \CRANpkg{mda}.
#'
#' @section Initial parameter values:
#' * `keep.fitted`: Set to `FALSE` by default for speed.
#'
#' @templateVar id classif.mda
#' @template learner
#'
#' @template seealso_learner
#' @template example
#' @export
LearnerClassifMda = R6Class("LearnerClassifMda",
inherit = LearnerClassif,
public = list(
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
initialize = function() {
param_set = ps(
criterion = p_fct(default = "misclassification", levels = c("misclassification", "deviance"), tags = "train"),
dimension = p_int(lower = 1L, tags = c("train", "predict")),
eps = p_dbl(default = .Machine$double.eps, lower = 0, tags = "train"),
iter = p_int(default = 5L, lower = 1L, tags = "train"),
keep.fitted = p_lgl(default = TRUE, tags = "train"),
method = p_fct(default = "polyreg", levels = c("polyreg", "mars", "bruto", "gen.ridge"), tags = "train"),
prior = p_dbl(lower = 0, upper = 1, tags = "predict"),
start.method = p_fct(default = "kmeans", levels = c("kmeans", "lvq"), tags = "train"),
sub.df = p_int(lower = 1L, tags = "train"),
subclasses = p_int(default = 2L, tags = "train"),
tot.df = p_int(lower = 1L, tags = "train"),
trace = p_lgl(default = FALSE, tags = "train"),
tries = p_int(default = 5L, lower = 1L, tags = "train"),
weights = p_uty(tags = "train")
)

param_set$values = list(keep.fitted = FALSE)

super$initialize(
id = "classif.mda",
packages = "mda",
feature_types = c("integer", "numeric", "factor", "ordered"),
predict_types = c("response", "prob"),
param_set = param_set,
properties = c("twoclass", "multiclass"),
man = "mlr3extralearners::mlr_learners_classif.mda",
label = "Mixture Discriminant Analysis"
)
}
),
private = list(
.train = function(task) {
# get parameters for training
pars = self$param_set$get_values(tags = "train")

# get formula and data
formula = task$formula()
data = task$data()

# handle method parameter
if (!is.null(pars$method)) {
if (is.character(pars$method)) {
pars$method = getFromNamespace(pars$method, "mda")
}
}

invoke(
mda::mda,
formula = formula,
data = data,
.args = pars
)
},
.predict = function(task) {
# get parameters with tag "predict"
pars = self$param_set$get_values(tags = "predict")

# get newdata and ensure same ordering in train and predict
newdata = ordered_features(task, self)

# Calculate predictions for the selected predict type
type = ifelse(self$predict_type == "response", "class", "posterior")
pred = invoke(predict, self$model, newdata = newdata, type = type, .args = pars)

if (self$predict_type == "response") {
list(response = pred)
} else {
list(prob = pred)
}
}
)
)

.extralrns_dict$add("classif.mda", LearnerClassifMda)
150 changes: 150 additions & 0 deletions man/mlr_learners_classif.mda.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

9 changes: 9 additions & 0 deletions tests/testthat/test_mda_classif_mda.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
skip_if_not_installed("mda")

test_that("autotest", {
learner = lrn("classif.mda", subclasses = 2)
expect_learner(learner)
# note that you can skip tests using the exclude argument
result = run_autotest(learner)
expect_true(result, info = result$error)
})
31 changes: 31 additions & 0 deletions tests/testthat/test_paramtest_mda_classif_mda.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
skip_if_not_installed("mda")

test_that("classif.mda train", {
learner = lrn("classif.mda")
fun = mda::mda
exclude = c(
"formula", # handled internally
"data", # handled internally
formalArgs(mda::mda.start) # handled internally by mda
)

# note that you can also pass a list of functions in case $.train calls more than one
# function, e.g. for control arguments
paramtest = run_paramtest(learner, fun, exclude, tag = "train")
expect_paramtest(paramtest)
})

test_that("classif.mda predict", {
learner = lrn("classif.mda")
fun = mda:::predict.mda # nolint
exclude = c(
"object", # handled internally
"data", # handled internally
"newdata", # handled internally
"type", # handled internally
"g"# unknown in CRAN documentation of mda
)

paramtest = run_paramtest(learner, fun, exclude, tag = "predict")
expect_paramtest(paramtest)
})
Loading