Skip to content

Conversation

danielvegamyhre
Copy link
Contributor

@danielvegamyhre danielvegamyhre commented Sep 15, 2025

Stacked PRs:


[mxfp8 moe training] wrap 3d quantize tensor in custom ops and integrate it

Torchtitan Llama4 e2e training benchmarks

Llama4 debug model

  • dim=5120 (standard)
  • num_layers=2, num_experts=2 (to allow for higher seq len and avoid OOM)
  • FSDP=2
  • compile=True

Note there are typically 1-8 experts per device depending on EP degree (for llama4 and DSV3, so these tests simulate 2 and 8 experts per device. We can do real tests using EP once pytorch/torchtitan#1651 is resolved).

seq_len=8192, experts per device = 2

tl;dr:

  • mxfp8 dense only: 1.05x over bf16
  • mxfp8 moe + dense: 1.27x speedup over bf16

Config:

    "debugmodel": TransformerModelArgs(
        dim=5120,
        n_layers=2,
        n_heads=40,
        n_kv_heads=8,
        ffn_dim_multiplier=1.2,
        multiple_of=2048,
        rope_theta=500000,
        max_seq_len=10485760,
        moe_args=MoEArgs(num_experts=2),
        interleave_moe_layer_step=1,
    ),
BF16

rm -rf /tmp/torchinductor_danvm; TORCHTITAN_ROOT=/home/danvm/torchtitan CUDA_VISIBLE_DEVICES="2,3,4,5" NGPU=2 EXTRA_ARGS="--parallelism.data_parallel_shard_degree=2 --parallelism.tensor_parallel_degree=1 --model.print-after-conversion --metrics.log_freq=10 --training.steps=100 --compile.enable --training.seq_len=8192" ./llama4.sh
Median Tokens/Second (excluding step 1): 66828.5
Max Memory Usage: 113.41 GiB

=========================================================================

MXFP8 DENSE ONLY

rm -rf /tmp/torchinductor_danvm; TORCHTITAN_ROOT=/home/danvm/torchtitan CUDA_VISIBLE_DEVICES="2,3,4,5" NGPU=2 EXTRA_ARGS="--parallelism.data_parallel_shard_degree=2 --parallelism.tensor_parallel_degree=1 --model.converters="mx" --mx.recipe_name="mxfp8_cublas" --mx.filter_fqns="output,router.gate,wk,wv" --model.print-after-conversion --metrics.log_freq=10 --training.steps=100 --compile.enable --training.seq_len=8192" ./llama4.sh 
Median Tokens/Second (excluding step 1): 70277.0
Max Memory Usage: 113.35 GiB

=========================================================================

MXFP8 MOE + DENSE

seq_len=8192 -> total_M=65600

(torch) [[email protected] ~/ao/benchmarks/float8/training (mx-moe-compile)]$ rm -rf /tmp/torchinductor_danvm; TORCHTITAN_ROOT=/home/danvm/torchtitan CUDA_VISIBLE_DEVICES="2,3,4,5" NGPU=2 EXTRA_ARGS="--parallelism.data_parallel_shard_degree=2 --parallelism.tensor_parallel_degree=1 --model.converters="mx" --mx.recipe_name="mxfp8_cublas" --mx.filter_fqns="output,router.gate,wk,wv" --mx.moe_fqns_prototype="experts" --model.print-after-conversion --metrics.log_freq=10 --training.steps=100 --compile.enable --training.seq_len=8192" ./llama4.sh 
Median Tokens/Second (excluding step 1): 85169.0
Max Memory Usage: 112.35 GiB

seq_len=2048, experts per device = 8

tl;dr:

  • mxfp8 dense only: 1.08x over bf16
  • mxfp8 moe + dense: 1.19x speedup over bf16

Llama4 debug model

  • dim=5120 (standard)
  • num_layers=8, num_experts=8 (to avoid OOM)
  • FSDP=4
  • compile=True

Config:

    "debugmodel": TransformerModelArgs(
        dim=5120,
        n_layers=8,
        n_heads=40,
        n_kv_heads=8,
        ffn_dim_multiplier=1.2,
        multiple_of=2048,
        rope_theta=500000,
        max_seq_len=10485760,
        moe_args=MoEArgs(num_experts=8),
        interleave_moe_layer_step=1,
    ),
BF16

rm -rf /tmp/torchinductor_danvm; TORCHTITAN_ROOT=/home/danvm/torchtitan CUDA_VISIBLE_DEVICES="2,3,4,5" NGPU=4 EXTRA_ARGS="--parallelism.data_parallel_shard_degree=4 --parallelism.tensor_parallel_degree=1 --model.print-after-conversion --metrics.log_freq=10 --training.steps=100 --compile.enable" ./llama4.sh 

Median Tokens/Second (excluding step 1): 24753.0
Max Memory Usage: 89.77 GiB

======================================================================

MX dense only

rm -rf /tmp/torchinductor_danvm; TORCHTITAN_ROOT=/home/danvm/torchtitan CUDA_VISIBLE_DEVICES="2,3,4,5" NGPU=4 EXTRA_ARGS="--parallelism.data_parallel_shard_degree=4 --parallelism.tensor_parallel_degree=1 --model.converters="mx" --mx.recipe_name="mxfp8_cublas" --mx.filter_fqns="output,router.gate,wk,wv" --model.print-after-conversion --metrics.log_freq=10 --training.steps=100 --compile.enable" ./llama4.sh 

Median Tokens/Second (excluding step 1): 26778.5
Max Memory Usage: 89.47 GiB

Speedup:  ~1.08x speedup over bf16

======================================================================

MX MoE + dense

rm -rf /tmp/torchinductor_danvm; TORCHTITAN_ROOT=/home/danvm/torchtitan CUDA_VISIBLE_DEVICES="2,3,4,5" NGPU=4 EXTRA_ARGS="--parallelism.data_parallel_shard_degree=4 --parallelism.tensor_parallel_degree=1 --model.converters="mx" --mx.recipe_name="mxfp8_cublas" --mx.filter_fqns="output,router.gate,wk,wv" --mx.moe_fqns_prototype="experts" --model.print-after-conversion --metrics.log_freq=10 --training.steps=100 --compile.enable" ./llama4.sh 

Median Tokens/Second (excluding step 1): 29373.5
Max Memory Usage: 82.39 GiB

Copy link

pytorch-bot bot commented Sep 15, 2025

🔗 Helpful Links

🧪 See artifacts and rendered test results at hud.pytorch.org/pr/pytorch/ao/3004

Note: Links to docs will display an error until the docs builds have been completed.

✅ No Failures

As of commit a68b868 with merge base f75b251 (image):
💚 Looks good so far! There are no failures yet. 💚

This comment was automatically generated by Dr. CI and updates every 15 minutes.

danielvegamyhre added a commit that referenced this pull request Sep 15, 2025
…ate it

stack-info: PR: #3004, branch: danielvegamyhre/stack/71
@meta-cla meta-cla bot added the CLA Signed This label is managed by the Facebook bot. Authors need to sign the CLA before a PR can be reviewed. label Sep 15, 2025
@danielvegamyhre danielvegamyhre added mx moe topic: not user facing Use this tag if you don't want this PR to show up in release notes labels Sep 15, 2025
@danielvegamyhre danielvegamyhre changed the base branch from danielvegamyhre/stack/69 to main September 15, 2025 20:38
danielvegamyhre added a commit that referenced this pull request Sep 15, 2025
…ate it

stack-info: PR: #3004, branch: danielvegamyhre/stack/71
@danielvegamyhre danielvegamyhre changed the base branch from main to danielvegamyhre/stack/69 September 15, 2025 20:38
@danielvegamyhre danielvegamyhre changed the base branch from danielvegamyhre/stack/69 to main September 15, 2025 21:02
danielvegamyhre added a commit that referenced this pull request Sep 15, 2025
…ate it

stack-info: PR: #3004, branch: danielvegamyhre/stack/71
@danielvegamyhre danielvegamyhre changed the base branch from main to danielvegamyhre/stack/69 September 15, 2025 21:02
@danielvegamyhre danielvegamyhre changed the base branch from danielvegamyhre/stack/69 to main September 15, 2025 21:20
danielvegamyhre added a commit that referenced this pull request Sep 15, 2025
…ate it

stack-info: PR: #3004, branch: danielvegamyhre/stack/71
@danielvegamyhre danielvegamyhre changed the base branch from main to danielvegamyhre/stack/69 September 15, 2025 21:21
@danielvegamyhre danielvegamyhre changed the base branch from danielvegamyhre/stack/69 to main September 16, 2025 02:51
@danielvegamyhre danielvegamyhre changed the base branch from main to danielvegamyhre/stack/69 September 16, 2025 02:51
@danielvegamyhre danielvegamyhre changed the base branch from danielvegamyhre/stack/69 to main September 16, 2025 02:59
danielvegamyhre added a commit that referenced this pull request Sep 16, 2025
…ate it

stack-info: PR: #3004, branch: danielvegamyhre/stack/71
@danielvegamyhre danielvegamyhre changed the base branch from danielvegamyhre/stack/69 to main September 17, 2025 15:28
danielvegamyhre added a commit that referenced this pull request Sep 17, 2025
…ate it

stack-info: PR: #3004, branch: danielvegamyhre/stack/71
@danielvegamyhre danielvegamyhre changed the base branch from main to danielvegamyhre/stack/69 September 17, 2025 15:28
@danielvegamyhre danielvegamyhre changed the base branch from danielvegamyhre/stack/69 to main September 17, 2025 15:47
danielvegamyhre added a commit that referenced this pull request Sep 17, 2025
…ate it

stack-info: PR: #3004, branch: danielvegamyhre/stack/71
@danielvegamyhre danielvegamyhre changed the base branch from main to danielvegamyhre/stack/69 September 17, 2025 15:48
danielvegamyhre added a commit that referenced this pull request Sep 17, 2025
…ate it

stack-info: PR: #3004, branch: danielvegamyhre/stack/71
@danielvegamyhre danielvegamyhre changed the base branch from danielvegamyhre/stack/69 to main September 17, 2025 16:19
danielvegamyhre added a commit that referenced this pull request Sep 17, 2025
…ate it

stack-info: PR: #3004, branch: danielvegamyhre/stack/71
@danielvegamyhre danielvegamyhre changed the base branch from main to danielvegamyhre/stack/69 September 17, 2025 16:19
danielvegamyhre added a commit that referenced this pull request Sep 17, 2025
…ate it

stack-info: PR: #3004, branch: danielvegamyhre/stack/71
danielvegamyhre added a commit that referenced this pull request Sep 17, 2025
…ate it

stack-info: PR: #3004, branch: danielvegamyhre/stack/71
…ate it

stack-info: PR: #3004, branch: danielvegamyhre/stack/71
@danielvegamyhre danielvegamyhre changed the base branch from danielvegamyhre/stack/69 to main September 19, 2025 03:35
@danielvegamyhre danielvegamyhre changed the base branch from main to danielvegamyhre/stack/69 September 19, 2025 03:35
@danielvegamyhre danielvegamyhre changed the base branch from danielvegamyhre/stack/69 to main September 19, 2025 03:54
@danielvegamyhre danielvegamyhre changed the base branch from main to danielvegamyhre/stack/69 September 19, 2025 03:55
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
CLA Signed This label is managed by the Facebook bot. Authors need to sign the CLA before a PR can be reviewed. moe mx topic: not user facing Use this tag if you don't want this PR to show up in release notes
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant