Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 8 additions & 0 deletions engine/clients/client_factory.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,11 @@
PgVectorUploader,
)
from engine.clients.qdrant import QdrantConfigurator, QdrantSearcher, QdrantUploader
from engine.clients.qdrant_native import (
QdrantNativeConfigurator,
QdrantNativeSearcher,
QdrantNativeUploader,
)
from engine.clients.redis import RedisConfigurator, RedisSearcher, RedisUploader
from engine.clients.weaviate import (
WeaviateConfigurator,
Expand All @@ -33,6 +38,7 @@

ENGINE_CONFIGURATORS = {
"qdrant": QdrantConfigurator,
"qdrant_native": QdrantNativeConfigurator,
"weaviate": WeaviateConfigurator,
"milvus": MilvusConfigurator,
"elasticsearch": ElasticConfigurator,
Expand All @@ -43,6 +49,7 @@

ENGINE_UPLOADERS = {
"qdrant": QdrantUploader,
"qdrant_native": QdrantNativeUploader,
"weaviate": WeaviateUploader,
"milvus": MilvusUploader,
"elasticsearch": ElasticUploader,
Expand All @@ -53,6 +60,7 @@

ENGINE_SEARCHERS = {
"qdrant": QdrantSearcher,
"qdrant_native": QdrantNativeSearcher,
"weaviate": WeaviateSearcher,
"milvus": MilvusSearcher,
"elasticsearch": ElasticSearcher,
Expand Down
9 changes: 9 additions & 0 deletions engine/clients/qdrant_native/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
from .configure import QdrantNativeConfigurator
from .search import QdrantNativeSearcher
from .upload import QdrantNativeUploader

__all__ = [
"QdrantNativeConfigurator",
"QdrantNativeUploader",
"QdrantNativeSearcher",
]
4 changes: 4 additions & 0 deletions engine/clients/qdrant_native/config.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
import os

QDRANT_COLLECTION_NAME = os.getenv("QDRANT_COLLECTION_NAME", "benchmark")
QDRANT_API_KEY = os.getenv("QDRANT_API_KEY", None)
132 changes: 132 additions & 0 deletions engine/clients/qdrant_native/configure.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,132 @@
import httpx

from benchmark.dataset import Dataset
from engine.base_client.configure import BaseConfigurator
from engine.base_client.distances import Distance
from engine.clients.qdrant_native.config import QDRANT_API_KEY, QDRANT_COLLECTION_NAME


class QdrantNativeConfigurator(BaseConfigurator):
SPARSE_VECTOR_SUPPORT = True
DISTANCE_MAPPING = {
Distance.L2: "Euclid",
Distance.COSINE: "Cosine",
Distance.DOT: "Dot",
}
INDEX_TYPE_MAPPING = {
"int": "integer",
"keyword": "keyword",
"text": "text",
"float": "float",
"geo": "geo",
}

def __init__(self, host, collection_params: dict, connection_params: dict):
super().__init__(host, collection_params, connection_params)

self.host = f"http://{host.rstrip('/')}:6333"
self.connection_params = connection_params

self.headers = {"Content-Type": "application/json"}
if QDRANT_API_KEY:
self.headers["api-key"] = QDRANT_API_KEY

timeout = connection_params.get("timeout", 30)
self.client = httpx.Client(
headers=self.headers,
timeout=httpx.Timeout(timeout=timeout),
)

def clean(self):
"""Delete the collection"""
url = f"{self.host}/collections/{QDRANT_COLLECTION_NAME}"
response = self.client.delete(url)
# 404 is ok if collection doesn't exist
if response.status_code not in [200, 404]:
response.raise_for_status()

def recreate(self, dataset: Dataset, collection_params):
"""Create collection with proper configuration"""
url = f"{self.host}/collections/{QDRANT_COLLECTION_NAME}"

# Build vectors configuration
if dataset.config.type == "sparse":
vectors_config = {}
sparse_vectors_config = {
"sparse": {
"index": {
"on_disk": False,
}
}
}
else:
is_vectors_on_disk = self.collection_params.get("vectors_config", {}).get(
"on_disk", False
)
self.collection_params.pop("vectors_config", None)

vectors_config = {
"size": dataset.config.vector_size,
"distance": self.DISTANCE_MAPPING.get(dataset.config.distance),
"on_disk": is_vectors_on_disk,
}
sparse_vectors_config = None

payload_index_params = self.collection_params.pop("payload_index_params", {})
if not set(payload_index_params.keys()).issubset(dataset.config.schema.keys()):
raise ValueError("payload_index_params are not found in dataset schema")

# Set optimizers config - disable index building during upload by default
optimizers_config = self.collection_params.setdefault("optimizers_config", {})
optimizers_config.setdefault("max_optimization_threads", 0)

# Build the collection creation payload
payload = {}
if vectors_config:
payload["vectors"] = vectors_config
if sparse_vectors_config:
payload["sparse_vectors"] = sparse_vectors_config

for key, value in self.collection_params.items():
payload[key] = value

response = self.client.put(url, json=payload)
response.raise_for_status()

for field_name, field_type in dataset.config.schema.items():
self._create_payload_index(field_name, field_type, payload_index_params)

def _create_payload_index(
self, field_name: str, field_type: str, payload_index_params: dict
):
"""Create a payload index for a specific field"""
url = f"{self.host}/collections/{QDRANT_COLLECTION_NAME}/index"

Copy link

Copilot AI Oct 31, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The field type 'uuid' is checked but not present in the INDEX_TYPE_MAPPING dictionary (lines 16-22). This will cause INDEX_TYPE_MAPPING.get(field_type, 'keyword') on line 106 to fall back to the default 'keyword', which may not be the intended behavior. Either add 'uuid' to INDEX_TYPE_MAPPING or remove it from this condition.

Copilot uses AI. Check for mistakes.
# Build the field schema based on type
if field_type in ["keyword", "uuid"]:
field_schema = {
"type": self.INDEX_TYPE_MAPPING.get(field_type, "keyword"),
}

# Add optional parameters if provided
params = payload_index_params.get(field_name, {})
if "is_tenant" in params and params["is_tenant"] is not None:
field_schema["is_tenant"] = params["is_tenant"]
if "on_disk" in params and params["on_disk"] is not None:
field_schema["on_disk"] = params["on_disk"]
else:
# For other types, just use the type string
field_schema = self.INDEX_TYPE_MAPPING.get(field_type, field_type)

payload = {
"field_name": field_name,
"field_schema": field_schema,
}

response = self.client.put(url, json=payload)
response.raise_for_status()

def delete_client(self):
"""Cleanup HTTP client"""
if hasattr(self, "client") and self.client is not None:
self.client.close()
70 changes: 70 additions & 0 deletions engine/clients/qdrant_native/parser.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,70 @@
from typing import Any, List, Optional

from engine.base_client.parser import BaseConditionParser, FieldValue


class QdrantNativeConditionParser(BaseConditionParser):
"""
Parser that converts internal filter format to Qdrant REST API JSON format.
Returns plain dictionaries instead of Pydantic models.
"""

def build_condition(
self, and_subfilters: Optional[List[Any]], or_subfilters: Optional[List[Any]]
) -> Optional[Any]:
"""Build a filter condition combining AND/OR subfilters"""
filter_dict = {}

if and_subfilters:
filter_dict["must"] = and_subfilters

if or_subfilters:
filter_dict["should"] = or_subfilters

return filter_dict if filter_dict else None

def build_exact_match_filter(self, field_name: str, value: FieldValue) -> Any:
"""Build an exact match filter"""
return {
"key": field_name,
"match": {"value": value},
}

def build_range_filter(
self,
field_name: str,
lt: Optional[FieldValue],
gt: Optional[FieldValue],
lte: Optional[FieldValue],
gte: Optional[FieldValue],
) -> Any:
"""Build a range filter"""
range_dict = {}
if lt is not None:
range_dict["lt"] = lt
if gt is not None:
range_dict["gt"] = gt
if lte is not None:
range_dict["lte"] = lte
if gte is not None:
range_dict["gte"] = gte

return {
"key": field_name,
"range": range_dict,
}

def build_geo_filter(
self, field_name: str, lat: float, lon: float, radius: float
) -> Any:
"""Build a geo radius filter"""
return {
"key": field_name,
"geo_radius": {
"center": {
"lon": lon,
"lat": lat,
},
"radius": radius,
},
}
93 changes: 93 additions & 0 deletions engine/clients/qdrant_native/search.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,93 @@
from typing import List, Tuple

import httpx

from dataset_reader.base_reader import Query
from engine.base_client.search import BaseSearcher
from engine.clients.qdrant_native.config import QDRANT_API_KEY, QDRANT_COLLECTION_NAME
from engine.clients.qdrant_native.parser import QdrantNativeConditionParser


class QdrantNativeSearcher(BaseSearcher):
search_params = {}
client: httpx.Client = None
parser = QdrantNativeConditionParser()
host = None
headers = {}

@classmethod
def init_client(cls, host, distance, connection_params: dict, search_params: dict):
cls.host = f"http://{host.rstrip('/')}:6333"
cls.search_params = search_params

# Build headers
cls.headers = {"Content-Type": "application/json"}
if QDRANT_API_KEY:
cls.headers["api-key"] = QDRANT_API_KEY

# Create HTTP client
timeout = connection_params.get("timeout", 30)
cls.client = httpx.Client(
headers=cls.headers,
timeout=httpx.Timeout(timeout=timeout),
limits=httpx.Limits(max_connections=None, max_keepalive_connections=0),
)

@classmethod
def search_one(cls, query: Query, top: int) -> List[Tuple[int, float]]:
"""Execute a single search query using REST API"""
url = f"{cls.host}/collections/{QDRANT_COLLECTION_NAME}/points/query"

if query.sparse_vector is None:
query_vector = query.vector
else:
query_vector = {
"indices": query.sparse_vector.indices,
"values": query.sparse_vector.values,
}

payload = {
"query": query_vector,
"limit": top,
}

if query.sparse_vector is not None:
payload["using"] = "sparse"

query_filter = cls.parser.parse(query.meta_conditions)
if query_filter:
payload["filter"] = query_filter

search_config = cls.search_params.get("config", {})
if search_config:
payload["params"] = search_config

prefetch_config = cls.search_params.get("prefetch")
if prefetch_config:
prefetch = {
**prefetch_config,
"query": query_vector,
}
payload["prefetch"] = [prefetch]

with_payload = cls.search_params.get("with_payload", False)
payload["with_payload"] = with_payload

try:
response = cls.client.post(url, json=payload)
response.raise_for_status()
result = response.json()

points = result["result"]["points"]
return [(point["id"], point["score"]) for point in points]

except Exception as ex:
print(f"Something went wrong during search: {ex}")
raise ex

@classmethod
def delete_client(cls):
"""Cleanup HTTP client"""
if cls.client is not None:
cls.client.close()
cls.client = None
Loading