Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
56 changes: 56 additions & 0 deletions R/parVgmArea.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,56 @@
#' Parallelized vgmArea
#'
#' This function provides a parallelized analogue of
#' \code{\link[gstat]{vgmArea}}.
#'
#' @param cl a cluster object created by \code{\link{parallel}} or
#' \code{\link{snow}}
#' @param x a SpatialPolygons object
#' @param y a SpatialPolygons or SpatialPoints object
#' @param vgm a variogram model created by \code{\link[gstat]{vgm}}
#' @param ndiscr number of points into which SpatialPolygons will be discretized
#' @param covariance logical; if true returns covariance values, otherwise
#' return semivariance values.
#' @param ... additional arguments passed to \code{\link[gstat]{vgmArea}}
#' @export
parVgmArea <- function(x, y = x, vgm, nnodes=NULL, ndiscr = 16, covariance = TRUE, ...) {
if(is.null(nnodes)) { ## stop('parVgmArea must have nnodes argument')
return(gstat::vgmArea(x, y, vgm, ndiscr, covariance, ...))
}
if(gridded(x)) x <- as(x, "SpatialPolygons")
if(gridded(y)) y <- as(y, "SpatialPolygons")

stopifnot(is(x, "SpatialPolygons") || is(x, "SpatialPoints"))
stopifnot(is(y, "SpatialPolygons") || is(y, "SpatialPoints"))
stopifnot(is(vgm, "variogramModel"))

nx <- length(x)
ny <- length(y)

## initialize cluster
cl <- parallel::makeCluster(nnodes, ...)
parallel::clusterEvalQ(cl, {
library(gstat)
library(sp)
})
parallel::clusterExport(
cl, c('x', 'y', 'vgm', 'ndiscr', 'covariance', 'nx', 'ny'), envir=environment())

V <- parallel::parLapply(cl, 1:nx, function(i) { # outer loop
if (is(x, "SpatialPolygons")) {
px <- sp::spsample(x[i,], ndiscr, "regular", offset = c(.5,.5))
} else px <- x[i,]
sapply(1:ny, function(j) { # inner loop
if (is(y, "SpatialPolygons")) {
py <- sp::spsample(y[j,], ndiscr, "regular", offset = c(.5,.5))
} else py <- y[j,]
D <- sp::spDists(px, py)
D[D == 0] <- 1e-10
mean(gstat::variogramLine(vgm, dist_vector = D, covariance = covariance))
})
})

## clean up and return
parallel::stopCluster(cl)
do.call(rbind, V)
}