Your AI-Powered Research Assistant. Conduct iterative, deep research using Google Gemini 2.5 Flash with Google Search Grounding and URL context. No web-scraping dependency is required.
- Features
- Why This Project
- Workflow Diagram
- Persona Agents
- How It Works
- Project Structure
- Requirements
- Setup
- Usage
- Configuration
- Quickstart
- Example Output
- Support
- Contributing
- Roadmap
- License
The goal of this project is to provide the simplest yet most effective implementation of a deep research agent. It's designed to be easily understood, modified, and extended, aiming for a codebase under 500 lines of code (LoC).
Key Features:
- MCP Integration: Runs as a Model Context Protocol (MCP) server/tool for seamless agent integration.
- Gemini 2.5 Flash Pipeline: Long-context reasoning, structured JSON outputs, and tool use (Google Search Grounding, Code Execution, Functions) via env flags.
- Iterative Deep Dive: Query refinement + result analysis with learned context carried forward.
- Depth & Breadth Control: Tune exploration scope precisely.
- Semantic/Recursive Splitting: Token-aware chunking for robust summarization and analysis.
- Batching + Caching: Concurrency-limited batched model calls with LRU caches across prompts/results.
- Professional Reports: Generates structured Markdown (Abstract, ToC, Intro, Body, Methodology, Limitations, Key Learnings, References).
- Gemini-first, modern pipeline: Built around Gemini 2.5 Flash with optional tools (Search Grounding, Code Execution, Functions).
- Minimal, understandable core: Plain TypeScript; easy to audit and extend.
- Deterministic outputs: Zod-validated JSON and consistent report scaffolding.
- Agent-ready: Clean MCP server entry; works with Inspector and MCP-aware clients.
flowchart TB
subgraph Input
Q[User Query]
B[Breadth Parameter]
D[Depth Parameter]
end
DR[Deep Research] -->
SQ[SERP Queries] -->
PR[Process Results]
subgraph Results[Results]
direction TB
NL((Learnings))
ND((Directions))
end
PR --> NL
PR --> ND
DP{depth > 0?}
RD["Next Direction:
- Prior Goals
- New Questions
- Learnings"]
MR[Markdown Report]
%% Main Flow
Q & B & D --> DR
%% Results to Decision
NL & ND --> DP
%% Circular Flow
DP -->|Yes| RD
RD -->|New Context| DR
%% Final Output
DP -->|No| MR
%% Styling
classDef input fill:#7bed9f,stroke:#2ed573,color:black
classDef process fill:#70a1ff,stroke:#1e90ff,color:black
classDef recursive fill:#ffa502,stroke:#ff7f50,color:black
classDef output fill:#ff4757,stroke:#ff6b81,color:black
classDef results fill:#a8e6cf,stroke:#3b7a57,color:black
class Q,B,D input
class DR,SQ,PR process
class DP,RD recursive
class MR output
class NL,ND results
What are Persona Agents?
In deep-research, we utilize the concept of "persona agents" to guide the behavior of the Gemini language models. Instead of simply prompting the LLM with a task, we imbue it with a specific role, skills, personality, communication style, and values. This approach helps to:
- Focus the LLM's Output: By defining a clear persona, we encourage the LLM to generate responses that are aligned with the desired expertise and perspective.
- Improve Consistency: Personas help maintain a consistent tone and style throughout the research process.
- Enhance Task-Specific Performance: Tailoring the persona to the specific task (e.g., query generation, learning extraction, feedback) optimizes the LLM's output for that stage of the research.
Examples of Personas in use:
- Expert Research Strategist & Query Generator: Used for generating search queries, this persona emphasizes strategic thinking, comprehensive coverage, and precision in query formulation.
- Expert Research Assistant & Insight Extractor: When processing web page content, this persona focuses on meticulous analysis, factual accuracy, and extracting key learnings relevant to the research query.
- Expert Research Query Refiner & Strategic Advisor: For generating follow-up questions, this persona embodies strategic thinking, user intent understanding, and the ability to guide users towards clearer and more effective research questions.
- Professional Doctorate Level Researcher (System Prompt): This overarching persona, applied to the main system prompt, sets the tone for the entire research process, emphasizing expert-level analysis, logical structure, and in-depth investigation.
By leveraging persona agents, deep-research aims to achieve more targeted, consistent, and high-quality research outcomes from the Gemini language models.
Core modules:
src/deep-research.ts— orchestrates queries, batching, analysis, and synthesisgenerateSerpQueries()uses Gemini to propose SERP-style queries from your prompt and prior learningsprocessSerpResult()splits content, batches Gemini calls with tools enabled, extracts learnings and citationsconductResearch()runs analysis passes over semantic chunkswriteFinalReport()builds the final professional Markdown report
src/ai/providers.ts— GoogleGenAI wrapper for Gemini 2.5 Flash, batching, token control, optional toolssrc/ai/text-splitter.ts— RecursiveCharacter and Semantic splitterssrc/mcp-server.ts— MCP server entry point and typessrc/run.ts— CLI entry point
Pipeline highlights:
- Structured JSON outputs validated with Zod
- Concurrency-limited batching (
generateBatch,generateBatchWithTools) - LRU caches for prompts, SERP proposals, and reports
- Optional Gemini tools via flags: Google Search Grounding, Code Execution, Functions
deep-research-mcp-server/
├─ src/
│ ├─ ai/
│ │ ├─ providers.ts # Gemini wrapper, tools, batching, caching
│ │ └─ text-splitter.ts # Semantic/recursive splitters
│ ├─ mcp-server.ts # MCP server entry/types
│ ├─ deep-research.ts # Orchestrator: queries → analysis → synthesis
│ ├─ prompt.ts # System + templates
│ ├─ feedback.ts # Refinement/feedback loop
│ ├─ output-manager.ts # Report/output formatting
│ ├─ progress-manager.ts # CLI progress
│ ├─ terminal-utils.ts # CLI helpers
│ ├─ types.ts # Zod schemas/types
│ └─ utils/ # JSON/sanitize helpers
├─ dist/ # Build output
├─ .env.example # Environment template
├─ package.json # Scripts/deps
└─ README.md
- Node.js v22.x
- Google Gemini API key
-
Clone the repository:
git clone [your-repo-link-here]
-
Install dependencies:
npm install
-
Set up environment variables: Create a
.env.localfile in the project root:# Required GEMINI_API_KEY="your_gemini_key" # Recommended defaults GEMINI_MODEL=gemini-2.5-flash GEMINI_MAX_OUTPUT_TOKENS=65536 CONCURRENCY_LIMIT=5 # Gemini tools (enable as needed) ENABLE_GEMINI_GOOGLE_SEARCH=true ENABLE_GEMINI_CODE_EXECUTION=false ENABLE_GEMINI_FUNCTIONS=false
-
Build the project:
npm run build
To run deep-research as an MCP tool, start the MCP server:
node --env-file .env.local dist/mcp-server.jsYou can then invoke the deep-research tool from any MCP-compatible agent using the following parameters:
query(string, required): The research query.depth(number, optional, 1-5): Research depth (default: moderate).breadth(number, optional, 1-5): Research breadth (default: moderate).existingLearnings(string[], optional): Pre-existing research findings to guide research.
Example MCP Tool Arguments (JSON shape):
{
"name": "deep-research",
"arguments": {
"query": "State of multi-agent research agents in 2025",
"depth": 3,
"breadth": 3,
"existingLearnings": [
"Tool use improves grounding",
"Batching reduces latency"
]
}
}const mcp = new ModelContextProtocolClient(); // Assuming MCP client is initialized
async function invokeDeepResearchTool() {
try {
const result = await mcp.invoke("deep-research", {
query: "Explain the principles of blockchain technology",
depth: 2,
breadth: 4
});
if (result.isError) {
console.error("MCP Tool Error:", result.content[0].text);
} else {
console.log("Research Report:\n", result.content[0].text);
console.log("Sources:\n", result.metadata.sources);
}
} catch (error) {
console.error("MCP Invoke Error:", error);
}
}
invokeDeepResearchTool();To run deep-research directly from the command line:
npm run start "your research query"Example:
npm run start "what are latest developments in ai research agents"For interactive testing and debugging of the MCP server, use the MCP Inspector:
npx @modelcontextprotocol/inspector node --env-file .env.local dist/mcp-server.js- Environment: Provide
GEMINI_API_KEYto the MCP server process; model and tool flags via env. - Stateless calls: The server derives behavior from env; keep flags in sync with your client profile.
- Latency: Enable batching and reasonable
CONCURRENCY_LIMITto balance speed vs rate limits.
GEMINI_API_KEY— requiredGEMINI_MODEL— defaults togemini-2.5-flashGEMINI_MAX_OUTPUT_TOKENS— defaults to65536CONCURRENCY_LIMIT— defaults to5ENABLE_GEMINI_GOOGLE_SEARCH— enable Google Search Grounding toolENABLE_GEMINI_CODE_EXECUTION— enable code execution toolENABLE_GEMINI_FUNCTIONS— enable function calling
Optional providers (planned/behind flags): Exa/Tavily can be integrated later; Firecrawl is not required for the current pipeline.
- Clone and install
git clone https://github.com/ssdeanx/deep-research-mcp-server
cd deep-research-mcp-server
npm i && npm run build-
Create
.env.local(see Setup) -
Run as MCP server (Inspector)
npx @modelcontextprotocol/inspector node --env-file .env.local dist/mcp-server.js- Or run as CLI
npm run start "state of multi-agent research agents in 2025"# Abstract
Concise overview of the research goal, scope, method, and key findings.
# Table of Contents
...
# Introduction
Context and framing.
# Body
Evidence-backed sections with citations.
# Methodology
How sources were found and analyzed.
# Limitations
Assumptions and risks.
# Key Learnings
Bulleted insights and takeaways.
# References
Normalized citations to visited URLs.- Issues: Use GitHub Issues for bugs and feature requests.
- Discussions: Propose ideas or ask questions.
- Security: Do not file public issues for sensitive disclosures; contact maintainers privately.
- PRs welcome: Please open an issue first for significant changes.
- Standards: TypeScript 5.x, Node.js 22.x, lint/type-check before PRs.
- Checks:
npm run buildandtsc --noEmitmust pass. - Docs: Update
README.mdand.env.examplewhen changing env/config.
- Exa search integration (behind
ENABLE_EXA_PRIMARY), Google grounding for augmentation. - Provider cleanup: Remove Firecrawl after Exa migration (explicit approval required).
- CI/CD: Add GitHub Actions for build/lint/test and badge.
- Examples: Add sample reports and prompts.
- Missing API key: Ensure
GEMINI_API_KEYis set in.env.localand processes are started with--env-file .env.local. - Model/tool flags: If grounding or functions aren’t active, verify
ENABLE_GEMINI_GOOGLE_SEARCH,ENABLE_GEMINI_CODE_EXECUTION,ENABLE_GEMINI_FUNCTIONS. - Rate limits/latency: Lower
CONCURRENCY_LIMIT(e.g., 3) or rerun with fewer simultaneous queries. - Output too long: Reduce depth/breadth or lower
GEMINI_MAX_OUTPUT_TOKENS. - Schema parse errors: Rerun; the pipeline validates/repairs JSON, but extreme prompts may exceed budgets—trim prompt or reduce chunk size.
MIT License - Free and Open Source. Use it freely!
✨ Highlights of the latest changes. See also Roadmap.
🧪 Enhanced Research Validation
- ✅ Input validation: Minimum 10 characters + 3 words
- 📈 Output validation: Citation density (1.5+ per 100 words)
- 🔍 Recent sources check (3+ post-2019 references)
- ⚖️ Conflict disclosure enforcement
🧠 Gemini Integration Upgrades
- Consolidated on Gemini 2.5 Flash (long-context, structured JSON)
- Optional tools via env flags: Search Grounding, Code Execution, Functions
- Semantic + recursive splitting for context management
- Robust batching with concurrency control and caching
- Enhanced context management via semantic search
- Improved error handling and logging
🧹 Code Quality Improvements
- 🚀 Added concurrent processing pipeline
- Removed redundant academic-validators module
- 🛡️ Enhanced type safety across interfaces
- 📦 Optimized dependencies (≈30% smaller node_modules)
🆕 New Features
- 📊 Research metrics tracking (sources/learnings ratio)
Performance:
- 🚀 30% faster research cycles
- ⚡ 40% faster initial research cycles
- 📉 60% reduction in API errors
- 🧮 25% more efficient token usage