Skip to content

Conversation

@TassaraR
Copy link

@TassaraR TassaraR commented Sep 3, 2022

This changes refer to the sequential recommendations example notebook.

Original published code threw the following exception while trying to train the model (in Google Collab)

query_model = tf.keras.Sequential([
    tf.keras.layers.StringLookup(
      vocabulary=unique_movie_ids, mask_token=None),
    tf.keras.layers.Embedding(len(unique_movie_ids) + 1, embedding_dimension), 
    tf.keras.layers.GRU(embedding_dimension)
])
model.fit(cached_train, epochs=3)
Epoch 1/3
---------------------------------------------------------------------------
UnknownError                              Traceback (most recent call last)
[<ipython-input-87-5f54841df216>](https://localhost:8080/#) in <module>
----> 1 model.fit(cached_train, epochs=3)

1 frames
[/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/execute.py](https://localhost:8080/#) in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name)
     53     ctx.ensure_initialized()
     54     tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
---> 55                                         inputs, attrs, num_outputs)
     56   except core._NotOkStatusException as e:
     57     if name is not None:

UnknownError: Graph execution error:

Fail to find the dnn implementation.
	 [[{{node CudnnRNN}}]]
	 [[sequential_18/gru_8/PartitionedCall]] [Op:__inference_train_function_26280]

Changing

tf.keras.layers.GRU(embedding_dimension)

to

tf.keras.layers.RNN(tf.keras.layers.GRUCell(embedding_dimension))

Fixed this issue and allowed the model to be trained normally

@review-notebook-app
Copy link

Check out this pull request on  ReviewNB

See visual diffs & provide feedback on Jupyter Notebooks.


Powered by ReviewNB

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant