Skip to content

universal-tool-calling-protocol/utcp-agent

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

11 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

utcp agent logo

πŸš€ Ready-to-use agent with intelligent tool-calling capabilities

UTCP Agent is the easiest way to build custom, ready-to-use agents which have intelligent tool calling capabilities and can connect to any native endpoint. The agent automatically discovers, searches, and executes UTCP tools based on user queries.

The Universal Tool Calling Protocol (UTCP) is an open standard that enables AI agents to discover and directly call tools across various communication protocols, eliminating the need for wrapper servers and reducing latency.

Features

Feature Description
πŸ€– Intelligent Tool Discovery Automatically searches and selects relevant UTCP tools based on user queries.
🌐 Multi-LLM Support Compatible with OpenAI, Anthropic, and other LangChain-supported language models.
πŸ”„ LangGraph Workflow Uses LangGraph for structured agent execution with proper state management.
πŸ’¨ Streaming Support Optional streaming of workflow execution steps for real-time feedback.
🧠 Conversation Memory Built-in conversation history and checkpointing for continuous conversations.
πŸ”§ Flexible Configuration Easily configurable through UTCP client config and agent config.

Quick Start

Installation

pip install utcp-agent langchain-openai

Set your API key:

export OPENAI_API_KEY=your_api_key_here

Spin up your agent:

import asyncio
import os
from langchain_openai import ChatOpenAI
from utcp_agent import UtcpAgent

async def main():
    # Set your OpenAI API key
    llm = ChatOpenAI(
        model="gpt-4o-mini",
        api_key=os.getenv("OPENAI_API_KEY")
    )
    
    # Create agent with book search capability
    agent = await UtcpAgent.create(
        llm=llm,
        utcp_config={
            "manual_call_templates": [{
                "name": "openlibrary",
                "call_template_type": "http",
                "http_method": "GET",
                "url": "https://openlibrary.org/static/openapi.json",
                "content_type": "application/json"
            }]
        }
    )
    
    # Chat with the agent
    response = await agent.chat("Can you search for books by George Orwell?")
    print(f"Agent: {response}")

if __name__ == "__main__":
    asyncio.run(main())

Advanced Configuration

With Memory and Custom Prompts

from utcp_agent import UtcpAgent, UtcpAgentConfig
from langgraph.checkpoint.memory import MemorySaver

agent_config = UtcpAgentConfig(
    max_tools_per_search=10,
    checkpointer=MemorySaver(),
    system_prompt="You are a helpful AI assistant with access to various tools through UTCP."
)

agent = await UtcpAgent.create(
    llm=llm,
    utcp_config=utcp_config,
    agent_config=agent_config
)

# Use thread_id for conversation continuity
response = await agent.chat("Find me a science fiction book", thread_id="user_1")

With Environment Variables

from pathlib import Path

utcp_config = {
    "load_variables_from": [{
        "variable_loader_type": "dotenv",
        "env_file_path": str(Path(__file__).parent / ".env")
    }],
    "manual_call_templates": [{
        "name": "openlibrary",
        "call_template_type": "http", 
        "http_method": "GET",
        "url": "https://openlibrary.org/static/openapi.json",
        "content_type": "application/json"
    }]
}

Streaming Execution

async for step in agent.stream("Search for AI books"):
    print(f"Step: {step}")

Workflow

The agent follows a structured workflow using LangGraph, a library for building stateful, multi-actor applications with LLMs.

  1. Analyze Task: Understands the user's query and formulates the current task.
  2. Search Tools: Uses UTCP to find relevant tools for the task.
  3. Decide Action: Determines whether to call tools or respond directly.
  4. Execute Tools: Calls the selected tool with appropriate arguments.
  5. Respond: Formats and returns the final response to the user.
graph TD
    A[User Input] --> B[Analyze Task]
    B --> C[Search Tools]
    C --> D[Decide Action]
    D --> E{Action Type}
    E -->|Call Tool| F[Execute Tools]
    E -->|Respond| G[Generate Response]
    F --> G
    G --> H[End]
Loading

Examples

See the examples/ directory for comprehensive examples:

  • basic_openai.py: Using GPT models with book search.
  • basic_anthropic.py: Using Claude models.
  • streaming_example.py: Real-time workflow monitoring.
  • config_file_example.py: Loading UTCP configuration from files.
  • memory_conversation.py: Multi-turn conversations with memory.

Configuration Options

UtcpAgentConfig

Option Description
max_iterations Maximum workflow iterations (default: 3).
max_tools_per_search Maximum tools to retrieve per search (default: 10).
system_prompt Custom system prompt for the agent.
checkpointer LangGraph checkpointer for conversation memory.
callbacks LangChain callbacks for observability.
summarize_threshold Token count threshold for context summarization (default: 80000).

UTCP Configuration

The agent accepts a standard UTCP client configuration, which can include:

  • Variable definitions and loading
  • Manual call templates
  • Tool provider configurations

API Reference

UtcpAgent

Class Methods

  • create(llm, utcp_config=None, agent_config=None, root_dir=None)
    • Creates and initializes a UtcpAgent with an automatic UTCP client.

Instance Methods

  • chat(user_input: str, thread_id: Optional[str] = None) -> str

    • Processes user input and returns the agent's response.
    • Use thread_id for maintaining conversational continuity.
  • stream(user_input: str, thread_id: Optional[str] = None)

    • Streams the workflow execution steps.

Error Handling

The agent includes comprehensive error handling to manage:

  • Tool execution failures
  • JSON parsing errors in LLM responses
  • UTCP client errors
  • Fallback responses to ensure the agent always provides a reply

Logging

Enable logging to monitor the agent's behavior:

import logging
logging.basicConfig(level=logging.INFO)
# Disable UTCP library logging for cleaner output
logging.getLogger("utcp").setLevel(logging.WARNING)

Contributing

  1. Follow the existing code style and patterns
  2. Add tests for new functionality
  3. Update documentation for API changes
  4. Ensure compatibility with UTCP core library

License

See LICENSE file for details.

About

Ready-to-use agent that can interact directly with any tool or native endpoint, in less than 5 lines of code

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages